首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cysteine proteases are one of the largest groups of proteases and are involved in many important biological functions in all kingdoms of life. They are virulence factors of a range of eukaryotic, bacterial and viral pathogens and are involved in host invasion, pathogen replication and disruption of the host immune response. Their activity is regulated by a range of protease inhibitors. This review discusses the various families of cysteine protease inhibitors, their different modes of inhibition and their evolutionary relationships. These inhibitors as well as the recent discovery of propeptide and propeptide-like inhibitors provide insights into the structures that are important for particular inhibitory mechanisms, thus forming the foundation for the design of future therapeutics.  相似文献   

2.
Our studies of Levantine viper venom have demonstrated that the venom is a rich source of biomedically important proteins and peptides. The venom contains metalloproteases: thrombolytic, fibrin-degrading lebetase, an endothelial cell apoptosis inducing metalloprotease (VLAIP), factor X activator (VLFXA); serine proteases: factor V activator, bradykinin-releasing serine proteases, β-fibrinogenase, α-fibrinogenase and chymotrypsin-like protease and different other enzymes such as phosphodiesterase, 5`-nucleotidase, ribonuclease, phospholipase A2s and L-amino acid oxidase. Among nonenzymatic components venom contains: nerve growth factor, vascular endothelial growth factor, disintegrins, C-type lectins.Here we report the isolation and characterization of proteins and peptides from Vipera lebetina venom using size exclusion, ion exchange, hydrophobic interaction and affinity chromatography, HPLC, UPLC and MALDI-TOF MS methods. N-terminal sequences and internal sequences of tryptic peptides of different proteins were determined using Edman sequencing and LC-ESI-MS/MS techniques. On the basis of fragmental sequences of proteins the oligonucleotides were designed and used as primers for cDNA cloning. Using cDNA library of the venom gland of a single snake the cDNAs coding proteins were cloned and sequenced. Protein sequences were deduced from cDNA sequences.The substrate specificity of venom proteases against insulin B-chain, bradykinin, substance P, and 6-10 amino acid residues containing peptides synthesized according to potential cleavage regions of fibrinogen, factor X, factor IX, factor V, α2-macroglobulin bait region and pregnancy zone protein were studied using MALDI-TOF mass spectrometry technique.  相似文献   

3.
In this study, large-scale qualitative and quantitative proteomic technology was applied to the analysis of the opportunistic bacterial pathogen Pseudomonas aeruginosa grown under magnesium limitation, an environmental condition previously shown to induce expression of various virulence factors. For quantitative analysis, whole cell and membrane proteins were differentially labeled with isotope-coded affinity tag (ICAT) reagents and ICAT reagent-labeled peptides were separated by two-dimensional chromatography prior to analysis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) in an ion trap mass spectrometer (ITMS). To increase the number of protein identifications, gas-phase fractionation (GPF) in the m/z dimension was employed for analysis of ICAT peptides derived from whole cell extracts. The experiments confirmed expression of 1331 P. aeruginosa proteins of which 145 were differentially expressed upon limitation of magnesium. A number of conserved Gram-negative magnesium stress-response proteins involved in bacterial virulence were among the most abundant proteins induced in low magnesium. Comparative ICAT analysis of membrane versus whole cell protein indicated that growth of P. aeruginosa in low magnesium resulted in altered subcellular compartmentalization of large enzyme complexes such as ribosomes. This result was confirmed by 2-D PAGE analysis of P. aeruginosa outer membrane proteins. This study shows that large-scale quantitative proteomic technology can be successfully applied to the analysis of whole bacteria and to the discovery of functionally relevant biologic phenotypes.  相似文献   

4.
5.
gamma-Secretase cleaves the transmembrane domain of the amyloid precursor protein, a process implicated in the pathogenesis of Alzheimer's disease, and this enzyme is a founding member of an emerging class of intramembrane proteases. Modeling and mutagenesis suggest a helical conformation for the substrate transmembrane domain upon initial interaction with the protease. Moreover, biochemical evidence supports the presence of an initial docking site for substrate on gamma-secretase that is distinct from the active site, a property predicted to be generally true of intramembrane proteases. Here we show that short peptides designed to adopt a helical conformation in solution are inhibitors of gamma-secretase in both cells and enzyme preparations. Helical peptides with all d-amino acids are the most potent inhibitors and represent potential therapeutic leads. Subtle modifications that disrupt helicity also substantially reduce potency, suggesting that this conformation is critical for effective inhibition. Fluorescence lifetime imaging in intact cells demonstrates that helical peptides disrupt binding between substrate and protease, whereas an active site-directed inhibitor does not. These findings are consistent with helical peptides interacting with the initial substrate docking site of gamma-secretase, suggesting a general strategy for the development of potent and specific inhibitors of intramembrane proteases.  相似文献   

6.
Selective fluorination of peptides results in increased chemical and thermal stability with simultaneously enhanced hydrophobicity. We demonstrate here that fluorinated derivatives of two host defense antimicrobial peptides, buforin and magainin, display moderately better protease stability while retaining, or exhibiting significantly increased bacteriostatic activity. Four fluorinated analogues in the buforin and two in the magainin series were prepared and analyzed for (1) their ability to resist hydrolytic cleavage by trypsin; (2) their antimicrobial activity against both gram-positive and gram-negative bacterial strains; and (3) their hemolytic activity. All but one fluorinated peptide (M2F5) showed retention, or significant enhancement, of antimicrobial activity. The peptides also showed modest increases in protease resistance, relative to the parent peptides. Only one of the six fluorinated peptides (BII1F2) was degraded by trypsin at a slightly faster rate than the parent peptide. Hemolytic activity of peptides in the buforin series was essentially null, while fluorinated magainin analogues displayed an increase in hemolysis compared to the parent peptides. These results suggest that fluorination may be an effective strategy to increase the stability of biologically active peptides where proteolytic degradation limits therapeutic value.  相似文献   

7.
To approach the daunting problem of multidrug resistant bacterial pathogens, a multidisciplinary chemical proteomic strategy was applied and functionalized beta-lactones were identified as potent, cell permeable inhibitors for specific and selective targeting of the key virulence regulator complex ClpP in S. aureus and methicillin resistant S. aureus (MRSA) strains. ClpP represents the central protease complex responsible for the activation of numerous virulence factors including many with devastating effects for human health such as hemolysins, proteases, lipases, and DNases. Although the crucial role of this enzyme was validated by genetic knockouts, no inhibitor has been reported to date. In fact, our most potent inhibitor was able to completely abolish hemolytic and proteolytic activities and showed a dramatic decrease in the activities of virulence associated lipases and DNases. These effects were also observed in a multiresistant strain emphasizing the potential value of such compounds. Targeting this virulence factor may therefore likely represent an attractive strategy for neutralizing the harmful effects of bacterial pathogens and help the host immune response to eliminate the disarmed bacteria. Since ClpP is not essential for viability and highly conserved in many pathogens, our strategy could represent a global approach for the treatment of infectious diseases without the pressing problem of antibiotic pressure and resistance development.  相似文献   

8.
Highly efficient and rapid proteolytic digestion of proteins into peptides is a crucial step in shotgun-based proteome-analysis strategy.Tandem digestion by two or more proteases is demonstrated to be helpful for increasing digestion efficiency and decreasing missed cleavages,which results in more peptides that are compatible with mass-spectrometry analysis.Compared to conventional solution digestion,immobilized protease digestion has the obvious advantages of short digestion time,no self-proteolysis,and reusability.We proposed a multiple-immobilized proteases-digestion strategy that combines the advantages of the two digestion strategies mentioned above.Graphene-oxide(GO)-based immobilized trypsin and endoproteinase Glu-C were prepared by covalently attaching them onto the GO surface.The prepared GO-trypsin and GO-Glu-C were successfully applied in standard protein digestion and multiple immobilized proteases digestion of total proteins of Thermoanaerobacter tengcongensis.Compared to 12-hour solution digestion using trypsin or Glu-C,14%and 7%improvement were obtained,respectively,in the sequence coverage of BSA by one-minute digestion using GO-trypsin and GO-Glu-C.Multiple immobilized-proteases digestion of the total proteins of Thermoanaerobacter tengcongensis showed 24.3%and 48.7%enhancement in the numbers of identified proteins than was obtained using GO-trypsin or GO-Glu-C alone.The ultra-fast and highly efficient digestion can be contributed to the high loading capacity of protease on GO,which leads to fewer missed cleavages and more complete digestion.As a result,improved protein identification and sequence coverage can be expected.  相似文献   

9.
Serum is a difficult matrix for the identification of biomarkers by mass spectrometry (MS). This is due to high-abundance proteins and their complex processing by a multitude of endogenous proteases making rigorous standardisation difficult. Here, we have investigated the use of defined exogenous reporter peptides as substrates for disease-specific proteases with respect to improved standardisation and disease classification accuracy. A recombinant N-terminal fragment of the Adenomatous Polyposis Coli (APC) protein was digested with trypsin to yield a peptide mixture for subsequent Reporter Peptide Spiking (RPS) of serum. Different preanalytical handling of serum samples was simulated by storage of serum samples for up to 6 h at ambient temperature, followed by RPS, further incubation under standardised conditions and testing for stability of protease-generated MS profiles. To demonstrate the superior classification accuracy achieved by RPS, a pilot profiling experiment was performed using serum specimens from pancreatic cancer patients (n = 50) and healthy controls (n = 50). After RPS six different peak categories could be defined, two of which (categories C and D) are modulated by endogenous proteases. These latter are relevant for improved classification accuracy as shown by enhanced disease-specific classification from 78% to 87% in unspiked and spiked samples, respectively. Peaks of these categories presented with unchanged signal intensities regardless of preanalytical conditions. The use of RPS generally improved the signal intensities of protease-generated peptide peaks. RPS circumvents preanalytical variabilities and improves classification accuracies. Our approach will be helpful to introduce MS-based proteomic profiling into routine laboratory testing.  相似文献   

10.
Development of endoproteases, programmed to promote degradation of peptides or proteins responsible for pathogenic states, represents an attractive therapeutic strategy, since such biocatalytic agents could be directed against a potentially unlimited repertoire of extracellular proteinaceous targets. Difficulties associated with engineering enzymes with tailor-made substrate specificities have, however, hindered the discovery of proteases possessing both the efficiency and selectivity to act as therapeutics. Here, we disclose a genetic system, designed to report on site-specific proteolysis through the survival of a bacterial host, and the implementation of this method in the directed evolution of proteases with a non-native substrate preference. The high sensitivity potential of this system was established by monitoring the activity of the Tobacco Etch Virus protease (TEV-Pr) against co-expressed substrates of various recognition level and corroborated by both intracellular and cell-free assays. The genetic selection system was then used in an iterative mode with a library of TEV-Pr mutants to direct the emergence of proteases favoring a nominally poor substrate of the stringently selective protease. The retrieval of mutant enzymes displaying enhanced proteolytic properties against the non-native sequence combined with reduced recognition of the cognate hexapeptide substrate demonstrates the potential of this system for evolving proteases with improved or completely unprecedented properties.  相似文献   

11.
Hydrogen/deuterium (H/D) exchange coupled to mass spectrometry is nowadays routinely used to probe protein interactions or conformational changes. The method has many advantages, e.g. very low sample consumption, but offers limited spatial resolution. One way to higher resolution leads through the use of different proteases or their combinations. In the present work we describe recombinant production, purification and use of aspartic protease zymogen from Rhizopus chimensis, protease type XVIII (EC 3.4.23.6), commonly referred to as rhizopuspepsinogen (Rpg). The enzyme was expressed in Escherichia coli, refolded and purified to homogeneity. A typical yield was approximately 100 mg of pure enzyme per 1 L of original bacterial culture. The kinetics of protease activation, i.e. removal of the propeptide achieved by autolysis in an acidic environment, was followed by mass spectrometry. The digestion efficiency was tested for the protease in solution as well as for the immobilized enzyme. Apomyoglobin was successfully digested under all conditions tested and the protease displayed very low or no autodigestion. The results outperformed those obtained with commercial protease where the digestion of apomyoglobin was incomplete and accompanied by many contaminating peptides. Taken together, the recombinant protease type XVIII can be considered as a new and highly efficient tool for H/D exchange followed by mass spectrometry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Lanthanide-based luminescent sensors are noteworthy because their long-lifetime luminescence enables time-resolved fluorescence measurements. After exploring suitable antenna groups, we designed and synthesized lanthanide-based luminogenic sensors detecting protease activities. This sensor yielded strong luminescence on addition of proteases such as calpain I and leucine aminopeptidase (LAP). Since the luminescence lifetimes of the probes were very long, the sensors could be applied to time-resolved measurements that exclude background fluorescence signals derived from proteins or other impurities. This sensing principle could be applicable to general time-resolved fluorescence assays for other proteases.  相似文献   

13.
Plant protease inhibitors (PIs) are generally small proteins present in high concentrations in storage tissues (tubers and seeds), and to a lower level in leaves. Even if most of them are active against serine and cysteine proteases, PIs active against aspartic proteases and carboxypeptidases have also been identified. Inhibitors of serine proteases are further classifiable in several families on the basis of their structural features. They comprise the families known as Bowman-Birk, Kunitz, Potato I and Potato II, which are the subject of review articles included in this special issue. In the present article we aim to give an overview of other families of plant PIs, active either against serine proteases or other class of proteases, describing their distribution, activity and main structural characteristics.  相似文献   

14.
Tian R  Jiang X  Li X  Jiang X  Feng S  Xu S  Han G  Ye M  Zou H 《Journal of chromatography. A》2006,1134(1-2):134-142
In this study, a gel free chemiproteomic method based on chromatography was developed and applied for the biological fingerprinting analysis of complex biological system. p-Aminobenzamidine (ABA), an inhibitor of trypsin-like serine proteases, was immobilized for characterizing their interacting proteins in human plasma. By the proteomic analysis method, 214 proteins were identified with obvious affinity to the immobilized ABA. By searching the sequences of above proteins with consensus patterns of the two active sites, seven proteins belong to trypsin-like serine protease group were found. Based on the Gene Ontology annotation, the identified trypsin-like serine proteases have the function of catalytic activity and calcium ion binding, and are mainly involved in the biological process of blood coagulation. Eight more other proteins related to calcium ion binding and blood coagulation were found. Nearly all of these proteins cannot be identified by directly analyzing the plasma sample demonstrating the chemiproteomics a useful approach to characterize interacting proteins in the low abundance range.  相似文献   

15.
Bayram T  Pekmez M  Arda N  Yalçin AS 《Talanta》2008,75(3):705-709
Whey proteins were isolated from whey powder by a combination of gel exclusion chromatography and protease (pepsin or trypsin) treatment. Whey solution (6g/dl) was applied to Sephadex G-200 column chromatography and three fractions were obtained. Gel electrophoresis (SDS-PAGE) was used to identify the fractions; the first one contained immunoglobulins and bovine serum albumin, the second contained beta-lactoglobulin and alpha-lactalbumin whereas the third fraction contained small peptides. We have also subjected the whey filtrate to proteases (pepsin and trypsin). Treatment with proteases showed that beta-lactoglobulin can be obtained after hydrolysis of the second fraction with pepsin. When the whey filtrate was treated with pepsin and then applied to Sephadex G-200 column chromatography three fractions were obtained; the first one was bovine serum albumin, the second was beta-lactoglobulin and the third fraction contained small peptides. After trypsin treatment only two fractions were obtained; the first one was serum albumin and the second fraction was an alpha-lactalbumin rich fraction. We have determined the antioxidant activity of the fractions using an assay based on the measurement of superoxide radical scavenging activity. Our results showed that among the three fractions, the first fraction had the highest superoxide radical scavenging activity. Also, protease treatment of the second fraction resulted in an increase in the antioxidant activity.  相似文献   

16.
Proteases are key regulators of many physiological and pathological processes [1,2], and are recognized as important and tractable drug candidates. Consequently, knowledge of protease substrate recognition and specificity promotes identification of biologically relevant substrates, helps elucidating a protease's biological function, and the design of specific inhibitors. Traditional methods for establishing substrate recognition profiles involve the identification of the scissile bond within a given protein substrate by proteomic methods such as Edman degradation. Then, synthetic peptide variants of this sequence can be screened in an iterative fashion to arrive at more optimized substrates. Even though it can be fruitful, this iterative strategy is biased toward the original substrate sequence and it is also tremendously cumbersome. Furthermore, it is not amenable to high throughput analysis. In 1993, Matthew & Wells presented a method for the use of monovalent "substrate phage" libraries for discovering peptide substrates for proteases, in which more than 10(7) potential substrates can be tested concurrently [3]. A library of fusion proteins was constructed containing randomized substrate sequences placed between a binding domain and the gene III coat protein of the filamentous phage, M13, which displays the fusion protein and packages the gene coding for it inside. Each fusion protein was displayed as a single copy on filamentous phagemid particles (substrate phage). This method allows one to rapidly survey the substrate recognition and specificity of individual or closely related members of proteases. Over the past decade, substrate phage screening has shown terrific utility in rapidly determining protease specificity and characterization of substrate recognition profile of proteases. In some cases, the structural insights of the catalytic domain were obtained from comparison of substrate specificity among closely related family of proteases [4-6]. The number of proteases (from various classes) characterized by this approach testifies to its power. Since the initial development of substrate phage library, different versions of the substrate phage cloning vectors have been constructed to further improve the utility of substrate phage display. This review will provide an overview of the construction of substrate phage display libraries, screening of substrate phage libraries, examples of application, summary and future directions.  相似文献   

17.
Matrix-assisted laser desorption/ionisation (MALDI) mechanisms and the factors that influence the intensity of the ion signal in the mass spectrum remain imperfectly understood. In proteomics, it is often necessary to maximise the peptide response in the mass spectrum, especially for low abundant proteins or for proteolytic peptides of particular significance. We set out to determine which of the common proteolytic enzymes give rise to peptides with the best response factors under MALDI conditions. Standard proteins were enzymatically digested using four common proteases. We assessed relative response factors by coanalyzing the resulting digests. Thus, when tryptic peptides were added in equimolar quantities to their corresponding Asp-N, chymotrypsin and Glu-C digests, tryptic peptide signals were always predominant in the resulting MALDI mass spectra. Observable peaks attributable to non-tryptic peptides generally contained a terminal basic residue. It was proposed that a terminal basic residue has a disproportionate influence upon gas-phase basicity, and this hypothesis was supported by experiments with model isotopically labelled peptides. Experiments applying Cook's kinetic method showed that the peptide with a C-terminal arginine residue was more basic than the equivalent peptide with an N-terminal arginine, which was more basic than the peptide in which the arginine was mid-chain. Thus, the observation of the higher MALDI mass spectrometry response factors of tryptic peptides in comparison with peptides derived using other proteolytic enzymes corresponds with higher gas-phase basicities and may, along with other factors such as the complexity of the digest, influence the choice of enzyme in "bottom-up" proteomic experiments.  相似文献   

18.
We demonstrate that a focused library based on truncated, cross-linked interfacial peptides of HIV-1 protease produces effective dimerization inhibitors of the enzyme. By combining individual changes of the library into a single compound, we obtained a significantly more potent agent and found that an additive increase in inhibitor efficacy was obtained. The good activity of library members against an active-site drug-resistant protease mutant bodes well for dimerization inhibition as a complementary method to targeting the active site.  相似文献   

19.
An affinity method was developed to investigate the interaction between protease and protease inhibitor by incorporating a protease incubation step into a two-dimensional electrophoretic separation of the plasma protease inhibitory proteins. This involved the application of the isoelectric focusing gel to filter paper saturated in the protease of choice before being placed on the second-dimensional polyacrylamide electrophoresis gel. General protein staining or immunoblotting was used to detect the protein or ligand in the complex. An in situ oxidation method was developed using the reagent chloramine T to investigate the effect of this reagent on the complexing abilities and inhibitory activities of the protease inhibitory proteins. Oxidation was performed either after electrophoresis prior to staining for enzyme inhibition or during two-dimensional electrophoresis prior to the aforementioned protease incubation. The latter allowed the effect of oxidation on complex formation to be examined. Whole plasmas were utilized as the sources of protease inhibitory proteins with the human and mouse being used as models. The equine protease inhibitory system was examined by the two methods and shown to consist of three classes of inhibitory proteins based on their susceptibilities to oxidation and abilities to form complexes with various proteases.  相似文献   

20.
Cysteine protease from grapevine (Vitis vinifera) belongs to those resistant proteins, which survive the process of vinification and can therefore be detected as wine components. Its amino acid sequence shows a homology to other members of the papain family, but the enzyme has only partially been explored so far. In order to get more biochemical information with the help of mass spectrometry (MS), wine proteins were collected by ultrafiltration and separated by gel permeation chromatography. The purified enzyme surprisingly displayed a high molecular mass value of around 200 kDa, indicating a possible oligomeric status and aggregation, as it entered only negligibly the separating 10% gel during polyacrylamide gel electrophoresis. The isoelectric point (pI) value of 3.6 was determined by chromatofocusing. Matrix‐assisted laser desorption/ionization (MALDI)‐MS was employed to evaluate the cleavage specificity and usefulness of the isolated cysteine protease in protein and peptide research. A potential applicability could be anticipated from the efficient digestion performance in volatile ammonium formate buffers at pH 3. Common peptides were digested and the resulting products analyzed by MS/MS sequencing. Then, mixtures of protein standards and extracted barley nuclear proteins were processed in the same way. Grape cysteine protease is nonspecific but shows a certain preference for Arg, Lys, and also Leu residues. Compared with papain, it seems not to require fully the presence of a large hydrophobic residue adjacent to that at the cleavage site. The enzyme is suitable for protein research as it produces peptides of a reasonable length in acidic pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号