首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A formalism is proposed to study the electronic and transport properties of graphene sheets with corrugations as the one recently synthesized. The formalism is based on coupling the Dirac equation that models the low energy electronic excitations of clean flat graphene samples to a curved space. A cosmic string analogy allows to treat an arbitrary number of topological defects located at arbitrary positions on the graphene plane. The usual defects that will always be present in any graphene sample as pentagon–heptagon pairs and Stone–Wales defects are studied as an example. The local density of states around the defects acquires characteristic modulations that could be observed in scanning tunnel and transmission electron microscopy.  相似文献   

2.
We study the properties of graphene wormholes in which a short nanotube acts as a bridge between two graphene sheets, where the honeycomb carbon lattice is curved from the presence of 12 heptagonal defects. By taking the nanotube bridge with very small length compared to the radius, we develop an effective theory of Dirac fermions to account for the low-energy electronic properties of the wormholes in the continuum limit, where the frustration induced by the heptagonal defects is mimicked by a line of fictitious gauge flux attached to each of them. We find in particular that, when the effective gauge flux from the topological defects becomes maximal, the zero-energy modes of the Dirac equation can be arranged into two triplets, that can be thought as the counterpart of the two triplets of zero modes that arise in the dual instance of the continuum limit of large spherical fullerenes. We further investigate the graphene wormhole spectra by performing a numerical diagonalization of tight-binding Hamiltonians for very large lattices realizing the wormhole geometry. The correspondence between the number of localized electronic states observed in the numerical approach and the effective gauge flux predicted in the continuum limit shows that graphene wormholes can be consistently described by an effective theory of two Dirac fermion fields in the curved geometry of the wormhole, opening the possibility of using real samples of the carbon material as a playground to experiment with the interaction between the background curvature and the Dirac fields.  相似文献   

3.
The electronic structure of graphene in the presence of either sevenfolds or eightfolds is studied using a gauge field-theory model. The graphene sheet with topological defects is considered as a negative cone surface with an infinite Gaussian curvature at the center. The density of electronic states is calculated for a single seven-and eightfold as well as for a pair of sevenfolds with different morphology. The density of states at the Fermi energy is found to be zero in all cases except two sevenfolds with translational factor M ≠ 0. The text was submitted by the authors in English.  相似文献   

4.
In this work, we study the low-energy electronic spectrum of a graphene layer structure with a disclination in the presence of a magnetic field. We make this study using the continuum approach, where we use the geometric theory of topological defects to introduce a disclination in a graphene layer, and the electrons are described by the massless Dirac equation in this curved background. The bound states energy spectrum and eigenfunctions are also obtained and an explicit dependence was found on the parameter that characterizes the topological defect and on the magnetic field.  相似文献   

5.
Recent experimental investigations show that large-area samples of graphene tend to be polycrystalline. Physical properties of such samples are strongly affected by the presence of intrinsic topological defects of polycrystalline materials—dislocations and grain boundaries. This article reviews recent progress in understanding dislocations and grain boundaries in graphene. First, a systematic approach towards constructing topological defects in graphene is introduced. Then, the review discusses the formation energies of these defects, stressing the dramatic stabilization of dislocations and small-angle grain boundaries in graphene due to the two-dimensional nature of this material. Finally, the electronic transport properties of polycrystalline graphene are considered, showing that topological defects may present novel opportunities towards engineering electronic devices based on graphene.  相似文献   

6.
Various types of topological defects in graphene are considered in the framework of the continuum model for long-wavelength electronic excitations, which is based on the Dirac–Weyl equation. The condition for the electronic wave function is specified, and we show that a topological defect can be presented as a pseudomagnetic vortex at the apex of a graphitic nanocone; the flux of the vortex is related to the deficit angle of the cone. The cases of all possible types of pentagonal defects, as well as several types of heptagonal defects (with the numbers of heptagons up to three, and six) are analyzed. The density of states and the ground state charge are determined.  相似文献   

7.
8.
《Physics letters. A》2014,378(30-31):2270-2274
We investigate electronic transport in the nitrogen-doped graphene containing different configurations of point defects: singly or doubly substituting N atoms and nitrogen–vacancy complexes. The results are numerically obtained using the quantum-mechanical Kubo–Greenwood formalism. Nitrogen substitutions in graphene lattice are modelled by the scattering potential adopted from the independent self-consistent ab initio calculations. Variety of quantitative and qualitative changes in the conductivity behaviour are revealed for both graphite- and pyridine-type N defects in graphene. For the most common graphite-like configurations in the N-doped graphene, we also consider cases of correlation and ordering of substitutional N atoms. The conductivity is found to be enhanced up to several times for correlated N dopants and tens times for ordered ones as compared to the cases of their random distributions. The presence of vacancies in the complex defects as well as ordering of N dopants suppresses the electron–hole asymmetry of the conductivity in graphene.  相似文献   

9.
10.
A new version of tetrad gravity in globally hyperbolic, asymptotically flat at spatial infinity spacetimes with Cauchy surfaces diffeomorphic to R 3 is obtained by using a new parametrization of arbitrary cotetrads to define a set of configurational variables to be used in the ADM metric action. Seven of the fourteen first class constraints have the form of the vanishing of canonical momenta. A comparison is made with other models of tetrad gravity and with the ADM canonical formalism for metric gravity.  相似文献   

11.
A continuum model to study the influence of dislocations on the electronic properties of condensed matter systems is described and analyzed. The model is based on a geometrical formalism that associates a density of dislocations with the torsion tensor and uses the technique of quantum field theory in curved space. When applied to two-dimensional systems with Dirac points like graphene we find that dislocations couple in the form of vector gauge fields similar to these arising from curvature or elastic strain. We also describe the ways to couple dislocations to normal metals with a Fermi surface.  相似文献   

12.
We develop a vertex formalism for topological string amplitudes on ruled surfaces with an arbitrary number of reducible fibers embedded in a Calabi-Yau threefold. Our construction is based on large N duality and localization with respect to a degenerate torus action. We also discuss potential generalizations of our formalism to a broader class of Calabi-Yau threefolds using the same underlying principles.  相似文献   

13.
欧阳方平  王焕友  李明君  肖金  徐慧 《物理学报》2008,57(11):7132-7138
基于第一性原理电子结构和输运性质计算,研究了单空位缺陷对单层石墨纳米带(包括zigzag型和armchair型带)电子性质的影响.研究发现,单空位缺陷使石墨纳米带在费米面上出现一平直的缺陷态能带;单空位缺陷的引入使zigzag型半导体性的石墨纳米带变为金属性,这在能带工程中有重要的应用价值;奇数宽度的armchair型石墨纳米带表现出金属特性,有着很好的导电性能,同时,偶数宽度的armchair型石墨带虽有金属性的能带结构,但却有类似半导体的伏安特性;单空位缺陷使得奇数宽度的armchair石墨纳米带导电 关键词: 石墨纳米带 单空位缺陷 电子结构 输运性质  相似文献   

14.
Using the formalism of the Dirac equation for curved space-time in the Friedmann model of a non-stationary universe, we calculate the electronic spectrum and density of states in curved graphene nanoribbons. Based on the obtained density of states we further study the current-voltage characteristics of the nanoribbonmetal tunnel junction. The dependence on the geometric characteristics of the nanoribbon has been revealed, showing a great influence of such parameters as the number of carbon atoms and the characteristic frequency of distortion.  相似文献   

15.
A two-spinor formalism for the Einstein Lagrangian is developed. The gravitational field is regarded as a composite object derived from soldering forms. Our formalism is geometrically and globally well-defined and may be used in virtually any 4m-dimensional manifold with arbitrary signature as well as without any stringent topological requirement on space-time, such as parallelizability. Interactions and feedbacks between gravity and spinor fields are considered. As is well known, the Hilbert–Einstein Lagrangian is second order also when expressed in terms of soldering forms. A covariant splitting is then analysed leading to a first-order Lagrangian which is recognized to play a fundamental role in the theory of conserved quantities. The splitting and thence the first-order Lagrangian depend on a reference spin connection which is physically interpreted as setting the zero level for conserved quantities. A complete and detailed treatment of conserved quantities is then presented.  相似文献   

16.
17.
We continue our study of matrix models of dually weighted graphs. Among the attractive features of these models is the possibility to interpolate between ensembles of regular and random two-dimensional lattices, relevant for the study of the crossover from two-dimensional flat space to two-dimensional quantum gravity. We further develop the formalism of largeN character expansions. In particular, a general method for determining the largeN limit of a character is derived. This method, aside from being potentially useful for a far greater class of problems, allows us to exactly solve the matrix models of dually weighted graphs, reducing them to a well-posed Riemann-Hilbert problem. The power of the method is illustrated by explicitly solving a new model in which only positive curvature defects are permitted on the surface, an arbitrary amount of negative curvature being introduced at a single insertion.In memoriam Claude ItzyksonThis work is supported by funds provided by the European Community, Human Capital and Mobility Programme.Unité Propre du Centre National de la Recherche Scientifique, associée à l'École Normale Supérieure et à l'Université de Paris-Sud.  相似文献   

18.
The generalized Newman-Penrose formalism is used to analyze semiclassical aligned spin fluids satisfying the Weyssenhoff restriction in the framework of Einstein-Cartan theory. Some general properties are derived and the formalism is then used to obtain two classes of exact solution. One has a flat metric, but the fluid has in general nonzero acceleration, expansion, and shear. It is characterized by two arbitrary constants and two functions of two variables satisfying one partial differential equation. In the other class the fluid has nonzero acceleration and vorticity, and the free gravitational field is of typeD. It is characterized by three arbitrary constants and an arbitrary function of two spacelike coordinates.  相似文献   

19.
The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel Z2 topological invariant, which distinguishes it from an ordinary insulator. The Z2 classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the Z2 order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multiband and interacting systems.  相似文献   

20.
Graphene is a monoatomic layer of graphite with carbon atoms arranged in a two-dimensional honeycomb lattice configuration. It has been known for more than 60 years that the electronic structure of graphene can be modelled by two-dimensional massless relativistic fermions. This property gives rise to numerous applications, both in applied sciences and in theoretical physics. Electronic circuits made out of graphene could take advantage of its high electron mobility that is witnessed even at room temperature. In the theoretical domain the Dirac-like behaviour of graphene can simulate high energy effects, such as the relativistic Klein paradox. Even more surprisingly, topological effects can be encoded in graphene such as the generation of vortices, charge fractionalisation and the emergence of anyons. The impact of the topological effects on graphene's electronic properties can be elegantly described by the Atiyah–Singer index theorem. Here we present a pedagogical encounter of this theorem and review its various applications to graphene. A direct consequence of the index theorem is charge fractionalisation that is usually known from the fractional quantum Hall effect. The charge fractionalisation gives rise to the exciting possibility of realising graphene based anyons that unlike bosons or fermions exhibit fractional statistics. Besides being of theoretical interest, anyons are a strong candidate for performing error free quantum information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号