首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
A fast and simple preparation procedure based on the matrix solid-phase dispersion (MSPD) technique is proposed for the first time for the isolation of 16 polycyclic aromatic hydrocarbons (PAHs) from soil samples. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-c,d]pyrene were considered in the study. Extraction and clean-up of samples were carried out in a single step. The main parameters that affect extraction yield, such as dispersant, type and amount of additives, clean-up co-sorbent and extractive solvent were evaluated and optimized. The addition of an alkali solution in MSPD was required to provide quantitative recoveries. Analytical determinations were carried out by high performance liquid chromatography (HPLC) with fluorescence detection. Quantification limits (between 0.01 and 0.6 ng g(-1) dry mass) were well below the regulatory limits for all the compounds considered. The extraction yields for the different compounds obtained by MSPD were compared with the yields obtained by microwave-assisted extraction (MAE). To test the accuracy of the MSPD technique, the optimized methodology was applied to the analysis of standard reference material BCR-524 (contaminated industrial soil), with excellent results.  相似文献   

2.
A simple and rapid microwave-assisted extraction (MAE) procedure was developed and optimized for benzo[a]anthracene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene in wood samples. The spiked wood used was prepared 3 months before analysis to simulate weathering processes and to allow the formation of analyte-matrix interaction. The samples, immersed in acetonitrile were irradiated with microwaves in a closed-vessel system. Optimization of the method was achieved by using a factorial design approach on parameters such as extraction time, temperature and sample amount. The analysis of extracts has been carried out by reversed-phase high-performance liquid chromatography with fluorescence detection for quantification and UV-diode-array detection for confirmation. The MAE procedure yielded extracts that could be analyzed directly without any preliminary clean-up or solvent exchange steps.  相似文献   

3.
采用新型固相萃取柱快速测定食用植物油中苯并[a]芘   总被引:3,自引:0,他引:3  
研究了Bond Elut ENV新型固相萃取柱在食用植物油中苯并[a]芘快速检测中的应用,建立了快速测定食用植物油样品中苯并[a]芘残留量的固相萃取/液相色谱/荧光检测法。样品用正己烷溶解,固相萃取净化,SUPELCOSILTMLC-PAH(25 cm×4.6 mm,5μm)色谱柱分离,以乙腈-水(95∶5)为流动相,荧光检测(λex=297 nm,λem=408 nm),外标法定量。苯并[a]芘的检出限为0.3μg/kg,在1.0~50.0μg/L范围内线性关系良好,相关系数为0.999 6,方法的回收率为79%~102%,相对标准偏差不高于9.4%。该方法准确、实用、简便、快速,在食用植物油的苯并[a]芘残留量检测方面有广泛的应用前景。  相似文献   

4.
建立了固相萃取-高效液相色谱-荧光法检测方便面和烤肠中苯并[a]芘的方法。采用正己烷作为提取溶剂,经苯并[a]芘专用固相萃取柱HiCapt Benzo富集净化,高效液相色谱-荧光法对样品中苯并[a]芘进行分离分析。苯并[a]芘的质量浓度在0.5~20.0μg/kg范围内与色谱峰面积呈良好的线性关系,相关系数R2为0.9997。方便面和烤肠中苯并[a]芘的加标回收率分别为92.2%~98.3%和95.9%~97.9%,日内和日间相对标准偏差分别为3.34%~5.01%和2.11%~4.07%。与传统方法相比,该方法快速简单、有机溶剂消耗少,在油炸烟熏食品的苯并[a]芘分析中具有较大应用前景。  相似文献   

5.
建立高效液相色谱二极管阵列检测器检测生活饮用水苯并[a]芘的测定方法。采用C18反相色谱柱(150mm×4.6 mm,5μm),在流动相为甲醇–水(体积比为90∶10)、流量1.0 mL/min、检测波长295 nm、柱温35℃、进样体积20μL的条件下测定生活饮用水中苯并[a]芘。该方法检出限为6 ng/L,线性范围0~100 ng/mL,加标回收率为88.1%~93.4%,测定结果的相对标准偏差为1.06%(n=9)。该法样品预处理简单,分离度高,分析时间短,适用于生活饮用水中苯并[a]芘的准确定性定量测定。  相似文献   

6.
A new procedure is developed for the extraction of polycyclic aromatic hydrocarbons (PAHs) from the particulate phase of cigarette smoke. The procedure applies solid-phase extraction using a Bond Elut CH cartridge as a sample preparation step. The efficiency of the cleanup procedure is verified using a gas chromatographic (GC)-high-resolution mass spectrometric (MS) technique, proving that no interference occurs in the PAHs' determination. The efficient cleanup allows GC detection using either high- or low-resolution MS detection. Enhanced sensitivity is obtained using GC-MS and selected ion monitoring. This new technique has several advantages over other reported techniques. The method is simple and robust and has good repeatability and accuracy. The estimated detection limit is 0.1 ng/cigarette for benzo[a]pyrene. In addition to that, the recovery from the smoke pad in which the smoke is collected is approximately 97% for all PAHs. Results for the PAH analyses for 1R5F, 1R4F, and 1R3 Kentucky reference cigarettes are reported in this study. These results provide useful evidence for clarifying the controversy about previously reported data.  相似文献   

7.
A supersonic jet instrument for fluorescence spectrometry is described. It consists of a high-temperature free expansion nozzle for continuous sample introduction and a vacuum chamber equipped with a high-speed pumping system. Rotationally cooled spectra obtained with the supersonic jet are compared with gas-phase spectra measured at high temperature for perylene and benzo[a]pyrene molecules. Each component of the unresolved band structure in the high-temperature spectra was found to be composed of a rotational congestion of several vibrational bands. For a 1:1 mixture of perylene and benzo[a]pyrene, selective detection is possible by using supersonic jet spectrometry. The detection limit for perylene is 100 ng. The advantage of this technique over other low-temperature spectrometric methods based on Shpol'skii and matrix isolation effects are discussed.  相似文献   

8.
The development and certification of a coal fly ash certified reference material (CRM) for polycyclic aromatic hydrocarbons (PAH) is described; this is the first natural matrix CRM for organic environmental analysis in China. The homogeneity and stability of this material have been tested by HPLC. The concentrations of several PAH were determined by use of two independent, different methods--solvent extraction-HPLC analysis with UV detection coupled with fluorescence detection (FLD) and solvent extraction, isolation with a silica column, and GC analysis with flame ionization detection (FID). Five certified values were determined: phenanthrene 7.1 +/- 2.6 microg g(-1), anthracene 2.0 +/- 0.8 microg g(-1), fluoranthene 7.4 +/- 1.9 microg g(-1), pyrene 7 +/- 2 microg g(-1), and benzo[a]pyrene 1.3 +/- 0.3 microg g(-1). Reference values for several other PAH are also suggested.  相似文献   

9.
The use of derivative constant-wavelength synchronous scan fluorimetry is reported for the determination of three polycyclic aromatic hydrocarbon pollutants in drinking water (linearity range 0.4-4 mug 1(-1)). The limits of detection (LD) and quantification (LQ) (mug 1(-1)) are 0.01 and 0.07 for benzo[b]fluoranthene, 0.03 and 0.12 for benzo[a]pyrene and 0.19 and 0.57 for indeno[1,2,3-cd]pyrene in the presence of three other pollutants, benzo[k]fluoranthene, benzo[ghi]perylene and fluoranthene. The precision (RSD /= 85%) were satisfactory.  相似文献   

10.
A method capable of determining 13 PAHs (acenaphthene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenzo[ah]anthracene, fluoranthene, fluorene, indene[1,2,3-cd]pyrene, phenanthrene and pyrene) in a mixture of 16 EPA PAHs by second derivative synchronous spectrofluorometry in the constant wavelength mode was developed. It has not been possible to determine the following PAHs in the mixture: acenaphthylene, benzo[ghi]perylene and naphthalene. The approach studied allows the sensitive, rapid and inexpensive identification and quantitation of 13 PAHs in a solution of hexane. The detection limits are <1 microg L(-1) (except for chrysene and phenanthrene).  相似文献   

11.
A method utilizing matrix solid-phase dispersion (MSPD) was developed for isolation and determination of dibenzo[a,l]pyrene (DBP) in experimental rainbow-trout diets used in a large-scale carcinogenesis study. A 0.5 g sample of moist ration containing 0-225 ppm DBP (dry basis) was mixed with 2 g C18 sorbent and benzo[a]pyrene internal standard was added to the mixture. Extraction and clean-up were accomplished in a single step by extracting the sample mixture with hexane-benzene 4:1 from a cartridge containing 2 g Florisil. DBP was quantified by HPLC on a C5 bonded phase column with fluorescence detection. Mean analytical recovery of DBP from control diet spiked at three concentration levels was 101 to 107% with relative standard deviations of 1 to 7%. The limit of detection of DBP was equivalent to 0.014 ppm in the ration. Application of the method to verification of DBP levels in trout rations from the carcinogenesis study is described. Control ration (0 ppm DBP) was screened for possible DBP contamination and none was found. This is the first report on analysis of DBP in experimental animal diets.  相似文献   

12.
A test method is developed for determining benzo[a]pyrene in natural water, based on the use of a polyethylene filter (frit) with adsorbed specific antibodies, placed within a transparent column. In passing a test solution, the analyte is adsorbed on the frit similarly to the process implemented in immunoaffinity preconcentration. The added conjugate of a labeled analyte takes the remained vacant binding sites of antibodies. Luminescent semiconductor nanoparticles (quantum dots) CdSe/ZnS, used as labels, enable visual determination under irradiation with UV light. The limit of detection for benzo[a]pyrene in water is ~0.5 ng/mL.  相似文献   

13.
We have evaluated both electron ionization (EI) and negative-ion chemical ionization (NICI) methods for the analysis of trimethylsilyl derivatives of a series of polycyclic aromatic hydrocarbon (PAH) alcohols including styrene diol, benzo[e]pyrene diol and tetrols, cyclopenta[c,d]pyrene diols, benzo[a]pyrene-4,5-diols, chrysene tetrols, benz[a]anthracene tetrols I and II, and syn- and anti-benzo[a]pyrene tetrols. NICI is the more sensitive method for all compounds except styrene diol. Detection limits are compound-dependent and range from 1 fmol for cyclopenta[c,d]pyrene diol to 1 pmol for benzo[e]pyrene diol. The EI detection limit for styrene diol is 60 fmol. PAH alcohols related to the compounds listed above were observed following hydrolysis of hemoglobin which had been reacted with PAH epoxides in vitro. Benzo[a]pyrene tetrols and a chrysene tetrol were observed following hydrolysis of hemoglobin isolated from human smokers' blood. Hydrolysis of styrene oxide treated hemoglobin in 18O-labeled water revealed at least two mechanisms of ester hydrolysis, including the BAL 1 pathway.  相似文献   

14.
The present work displays capillary liquid chromatographic column switching methodology tailored for determination of benzo[a]pyrene tetrol isomers in biological matrices using on-line fluorescence and micro-electrospray ionization mass spectrometric detection. A well-established off-line crude solid phase extraction procedure was used in order to make the method compatible with several biological matrices. The solid phase extraction eluates were evaporated to dryness, redissolved in 1.0 ml methanol:water (10:90, v/v), loaded onto a 0.32 mm I.D. x 40 mm 5 microm Kromasil C(18) pre-column for analyte enrichment and back-flushed elution onto a 0.30 mm I.D. x 150 mm 3.5 microm Kromasil C(18) analytical column. The samples were loaded with a flow rate of 50 microl min(-1) and the tetrols were separated at a flow rate of 4 microl min(-1) with an acetonitrile:10 mM ammonium acetate gradient from 10 to 90%. A sample loading flow rate up to 50 microl min(-1) was allowed. The fluorescence excitation and emission were set to 342 and 385 nm, respectively, while mass spectrometric detection of the benzo[a]pyrene tetrols was obtained by monitoring their [M - H](-) molecular ions at m/z 319. The method was validated over the concentration range 0.1-50 ng ml(-1) benzo[a]pyrene tetrols in a cell culture medium with 100 microl injection volume, fluorescence detection and the first eluting tetrol isomer as model compound, resulting in a correlation coefficient of 0.993. The within-assay (n= 6) and between-assay (n= 6) precisions were determined to 2.6-8.6% and 3.8-9.6%, respectively, and the recoveries were determined to 97.9-102.4% within the investigated concentration range. The mass limit of detection (by fluorescence) was 3 pg for all the tetrol isomers, corresponding to a concentration limit of detection of 30 pg ml(-1) cell culture medium. The corresponding mass spectrometric mass limits of detection were 4-10 pg, corresponding to concentration limits of detection of 40-100 pg ml(-1) cell culture medium.  相似文献   

15.
An extraction/clean-up procedure by SFE was developed for isolating PAHs from liver samples for subsequent HPLC-FL determination of ten PAHs in the enriched extract. Recoveries (90-115%) and RSD % (< or =7.7) were satisfactory. When applied to 11 samples of bird of prey (Tyto alba) protected species and classified of special interest, from the Galicia (Northwest to Spain), benzo[ghi]perylene and indeno[1,2,3-cd]pyrene were undetectable; chrysene and benzo[a]pyrene are only detected in one sample; benzo[a]anthracene and benzo[k]fluoranthene are only quantified in one sample and benzo[b]fluoranthene in two samples. The other PAHs, anthracene, fluoranthene and pyrene are present in almost all the samples.  相似文献   

16.
This paper presents a trisolvent ultrasonic extraction and HPLC analysis method for the determination of 11 polycyclic aromatic hydrocarbons in air particulate collected on an air filter by a commercial high volume air sampler. A reverse phase column, Vydac 201 TP, and a gradient mobile phase, acetonitrile/water, were used. The 11 PAHs, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a, h]anthracene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene were completely resolved under experimental conditions. All the PAHs except coronene were monitored by fluorescence with λex=270 nm, λem>389 nm. Coronene was monitored by UV with λ=300 nm. The methodology was evaluated by spiking SRM 1649 with a PAH standard and then going through different extraction procedures and analyzing the PAH concentrations without clean-up. An external standard method was used for quantitation. The recovery yields for fluoranthene, benz[a]anthracene, benzo[a]pyrene, benzo[ghi]perylene and indeno[l,2,3-cd]pyrene were above 90%. The detection limits of PAH with fluorescence at λex=270 nm, λem>389 nm ranged from 5.7 pg to 69.5 pg.  相似文献   

17.
Al-Haddad A 《Talanta》2003,59(4):845-848
A back-flushing procedure using porous graphitic carbon (PGC) HPLC columns has been used successfully for the cleanup of soil samples for the determination of benzo[a]pyrene in ppb levels by an ODS-fluorescence HPLC column. The procedure was tested on nine random soil samples taken from an industrial area of the Kingdom of Bahrain. The mean percent recovery from the PGC column was 96% and the average coefficient of variation for the whole method was 5.2%.  相似文献   

18.
Polycyclic aromatic hydrocarbons(PAHs)are important environmental pollutions originating from a wide variety of natural and anthropogenic sources.Benzo[a]pyrene is frequently sought as an indicator of the presence of other PAHs.Fluorescence spectrometry serves as a good technique to analyze PAHs with high sensitivity.However,this technique is unfavorable for the analysis of benzo[a]pyrene in multi-component PAHs because of spectral overlap.This complication can be simplified by using spec…  相似文献   

19.
A simple and rapid method for the highly sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in water was developed. Benzo[a]pyrene, benzo[k]fluoranthene, perylene, and pyrene in water were concentrated into sodium dodecyl sulfate (SDS)-alumina admicelles. The collection was performed by adding SDS and alumina particles into the sample solution at pH 2. After gentle mixing, the resulting suspension was passed through a membrane filter to collect the SDS admicelles containing highly concentrated PAHs. The filter was placed on a slide glass and then covered admicellar layer with a fused silica glass plate before setting in a fluorescence spectrometer. Benzo[a]pyrene, benzo[k]fluoranthene, perylene, and pyrene were selectively determined by the synchronous fluorescence scan (SFS) analysis with keeping wavelength intervals between excitation and emission to 98, 35, 29, and 45 nm, respectively. Because of the minimum spectral overlapping, 1-40 ng l−1 of benzo[a]pyrene, benzo[k]fluoranthene, and perylene as well as 10-150 ng l−1 of pyrene were selectively determined with eliminating the interferences of other 12 PAHs. The detection limits were 0.3 ng l−1 for benzo[a]pyrene, benzo[k]fluoranthene, and perylene, and 1 ng l−1 for pyrene. They were 2-3 orders of magnitude lower than the detection limits in normal aqueous micellar solutions. The application to water analysis was studied.  相似文献   

20.
Methodology was developed for the determination of eight polycyclic aromatic hydrocarbons (PAH) in five food categories including meat/fish, dried dairy products, cereals, leafy vegetables and vegetable/marine oils. The eight PAH were fluoranthene, benzo[a]anthracene, benzo[k]fluoranthene, benzo[b]fluoranthene, benzo[a]pyrene, 7,12-dimethylbenzo[a]anthracene, dibenzo[ah]anthracene and dibenzo[ai]pyrene. Samples were digested with alcoholic KOH followed by partitioning into solvents such as cyclohexane or isooctane. Lipids and other interferences were removed by solvent partitioning with dimethylformamide or dimethylsulfoxide/water. Additional cleanup involving column chromatography on silica gel, Florisil or Sephadex LH-20 was employed as required. Reversed-phase chromatography with gradient elution and fluorescence detection was employed for the determinations. Confirmation was carried out by GC-MS/SIM. Detection limits ranged from 2-90 ng/kg depending on the PAH and food analyzed. Results of a small survey indicated that the meat/fish category had the highest levels (low microgram/kg, on average) of the foods studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号