首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The reduction of ammonium pertechnetate with bis(diphenylphosphino)methane (dppm), and with diphenyl-2-pyridyl phosphine (Ph(2)Ppy), has been investigated. The neutral Tc(II) complex, trans-TcCl(2)(dppm)(2) (1), has been isolated from the reaction of (NH(4))[TcO(4)] with excess dppm in refluxing EtOH/HCl. Chemical oxidation with ferricinium hexafluorophosphate results in formation of the cationic Tc(III) analogue, trans-[TcCl(2)(dppm)(2)](PF(6)) (2). The dppm ligands adopt the chelating bonding mode in both complexes, resulting in strained four member metallocycles. With excess PhPpy, the reduction of (NH(4))[TcO(4)] in refluxing EtOH/HCl yields a complex with one chelating Ph(2)Ppy ligand and one unidentate Ph(2)Ppy ligand, mer-TcCl(3)(Ph(2)Ppy-P,N)(Ph(2)Ppy-P) (3). The cationic Tc(III) complexes, trans-[TcCl(2)(Ph(2)P(O)py-N,O)(2)](PF(6)) (4) and trans-[TcCl(2)(dppmO-P,O)(2)](PF(6)) (5) (Ph(2)P(O)py = diphenyl-2-pyridyl phosphine monoxide and dppmO = bis(diphenylphosphino)methane monoxide), have been isolated as byproducts from the reactions of (NH(4))[TcO(4)] with the corresponding phosphine. The products have been characterized in the solid state and in solution via a combination of single-crystal X-ray crystallography and spectroscopic techniques. The solution state spectroscopic results are consistent with the retention of the bonding modes revealed in the crystal structures.  相似文献   

2.
The new sterically hindered scorpionate tris(3-phenylpyrazolyl)methanesulfonate (Tpms(Ph))(-) has been synthesized and its coordination behavior toward a Cu(I) center, in the presence of 1,3,5-triaza-7-phosphaadamantane (PTA), N-methyl-1,3,5-triaza-7-phosphaadamantane tetraphenylborate ((mPTA)[BPh4]) or hexamethylenetetramine (HMT) has been studied. The reaction between Li(Tpms(Ph)) (1) and [Cu(MeCN)4][PF6] yields [Cu(Tpms(Ph))(MeCN)] (2) which, upon further acetonitrile displacement on reaction with PTA, HMT, or (mPTA)[BPh4], gives the corresponding complexes [Cu(Tpms(Ph))(PTA)] (3), [Cu(Tpms(Ph))(HMT)] (4), and [Cu(Tpms(Ph))(mPTA)][PF6] (5). All the compounds have been characterized by (1)H, (31)P, (13)C, COSY or HMQC-NMR, IR, elemental analysis, and single crystal X-ray diffraction. In the complexes (3) and (5), which bear a phosphine ligand (i.e., PTA and mPTA, respectively), the new scorpionate ligand shows the typical N, N, N-coordination mode, whereas in (2) and (4), bearing a N-donor ligand (i.e., MeCN and HMT, respectively), it binds the metal via the N,N,O chelating mode, involving the sulfonate moiety.  相似文献   

3.
Phosphonate and phosphonic acid functionalized phosphine complexes of platinum(II) were prepared via direct reaction of the ligands with K2PtCl4 in water. Either cis or trans geometries were found depending on the nature of the ligand. The crystal structure of P(3-C6H4PO3H2)3.2H2O (6b) (triclinic, P1, a = 8.3501(6) A, b = 10.1907(6) A, c = 14.6529(14) A, alpha = 94.177(6) degrees, beta = 105.885(6) degrees, gamma = 108.784(5) degrees, Z = 2) shows a layered arrangement of the phosphonic acid. The phosphonodiamide complex cis-[PtCl2(P[4-C6H4PO[N(CH3]2]]3)2].3H2O (10) was synthesized in 89% yield and hydrolyzed to the phosphonic acid complex using dilute HCl. Aqueous phase and silica gel supported catalytic phosphonylation of phenyl triflate using palladium phosphine complexes was achieved. A molybdenum complex, Mo(CO)5[P3-C6H4PO3H2)3] (11), was synthesized in situ and grafted to an alumina surface. XPS, RBS, and AFM studies confirm the formation of a monolayer of 11 on the alumina surface.  相似文献   

4.
Ar-B(OH)2 (1a: Ar = C6H4OMe-4, 1b: Ar = C6H3Me2-2,6) react immediately with Rh(OC6H4Me-4)(PMe3)3 (2) in 5 : 1 molar ratio at room temperature to generate [Rh(PMe3)4]+[B5O6Ar4]- (3a: Ar = C6H4OMe-4, 3b: Ar = C6H3Me2-2,6). p-Cresol (92%/Rh), anisole (80%/Rh) and H2O (364%/Rh) are formed from 1a and 2. The reaction of 1a with 2 for 24 h produces [Rh(PMe3)4]+[B5O6(OH)4]- (4) as a yellow solid. This is attributed to hydrolytic dearylation of once formed 3a because the direct reaction of 3a with excess H2O forms 4. An equimolar reaction of 2 with phenylboroxine (PhBO)3 causes transfer of the 4-methylphenoxo ligand from rhodium to boron to produce [Rh(PMe3)4]+[B3O3Ph3(OC6H4Me-4)]- (5). Arylboronic acids 1a and 1b react with Rh(OC6H4Me-4)(PR3)3 (6: R = Et, 8: R = Ph) and with Rh(OC6H4Me-4)(cod)(PR3) (11: R = iPr, 12: R = Ph) to form [Rh(PR3)4]+[B5O6Ar4]- (7a: R = Et, Ar = C6H4OMe-4, 7b: R = Et, Ar = C6H3Me2-2,6, 9a: R = Ph, Ar = C6H3Me2-2,6) and [Rh(cod)(PR3)(L)]+[B5O6Ar4]- (13b: R = iPr, L = acetone, Ar = C6H3Me2-2,6, 14a: R = Ph, L = PPh3, Ar = C6H4OMe-4, 14b: R = Ph, L = PPh3, Ar = C6H3Me2-2,6), respectively. Hydrolysis of 14a yields [Rh(cod)(PPh3)2]+[B5O6(OH)4]- (15) quantitatively.  相似文献   

5.
Neutral zinc, cadmium, mercury(II), and ethylmercury(II) complexes of a series of phosphinothiol ligands, PhnP(C6H3(SH-2)(R-3))3-n (n = 1, 2; R = H, SiMe3) have been synthesized and characterized by IR and NMR ((1)H, (13)C, and (31)P) spectroscopy, FAB mass spectrometry, and X-ray structural analysis. The compounds [Zn{PhP(C6H4S-2)2}] (1) and [Cd{Ph2PC6H4S-2}2] (2) have been synthesized by electrochemical oxidation of anodic metal (zinc or cadmium) in an acetonitrile solution of the appropriate ligand. The presence of pyridine in the electrolytic cell affords the mixed complexes [Zn{PhP(C6H4S-2)2}(py)] (3) and [Cd{PhP(C6H4S-2)2}(py)] (4). [Hg{Ph2PC6H4S-2}2] (5) and [Hg{Ph2PC6H3(S-2)(SiMe3-3)}2] (6) were obtained by the addition of the appropriate ligand to a solution of mercury(II) acetate in methanol in the presence of triethylamine. [EtHg{Ph2PC6H4S-2}] (7), [EtHg{Ph2P(O)C6H3(S-2)(SiMe3-3)}] (8), [{EtHg}2{PhP(C6H4S-2)2}] (9), and [{EtHg}2{PhP(C6H3(S-2)(SiMe3-3))2}] (10) were obtained by reaction of ethylmercury(II) chloride with the corresponding ligand in methanol. In addition, in the reactions of EtHgCl with Ph2PC6H4SH-2 and with the potentially tridentate ligand PhP(C6H3(SH-2)(SiMe3-3)) 2, cleavage of the Hg-C bond was observed with the formation of [Hg{Ph2PC6H4S-2}2] (5) and [Hg(EtHg) 2{PhP(O)(C6H3(S-2)(SiMe3-3))2}2] (11), respectively, and the corresponding hydrocarbon. The crystal structures of [Zn3{PhP(C6H4S-2)2}2{PhP(O)(C6H4S-2)2}] (1*), [Cd2{Ph2PC6H4S-2}3{Ph2P(O)C6H4S-2}] (2*), 3, 5, 6, [EtHg{Ph2P(O)C6H4S-2}] (7*), 8, 9, [{EtHg}2{PhP(O)(C6H3(S-2)(SiMe3-3))2}] (10*), and 11 are discussed. The molecular structures of 1, 2, 4, 7, and 10 have also been studied by means of density functional theory (DFT) calculations.  相似文献   

6.
The reactivity of the tetranuclear metallated palladium compound (Pd[mu 2-(C6H4)PPh2]Br)4 (1) with different ligands has been investigated with the aim of evaluating the influence of the entering ligand on the nature of the reaction products. The results confirmed the ability of the ligand [(C6H4)PPh2]- to expand a bridging [mu 2-] or a chelating [eta 2-] coordination mode, depending on the auxiliary ligands present in the complex. Bulky phosphines stabilize mononuclear species of formula (Pd[eta 2-(C6H4)PPh2]Br[P]), with a four-atom metallocycle, while small phosphines give dinuclear compounds. The molecular structures of three different metalated palladium compounds have been determined by single-crystal X-ray crystallography; the tetranuclear (Pd[mu 2-(C6H4)PPh2]Cl)4 (2), the dinuclear(Pd[mu 2-(C6H4)PPh2]Br[PMe3])2 (3), and the mononuclear (Pd[eta 2-(C6H4)PPh2]Br[PCBr]), (PCBr = P(o-BrC6H4)Ph2) (9) were obtained, the first one by halogen exchange reaction and the others by frame degradation of 1.  相似文献   

7.
The symmetric rhenium(V) oxo Schiff base complexes trans-[ReO(OH2)(acac2en)]Cl and trans-[ReOCl(acac2pn)], where acac2en and acac2pn are the tetradentate Schiff base ligands N,N'-ethylenebis(acetylacetone) diimine and N,N'-propylenebis(acetylacetone) diimine, respectively, were reacted with monodentate phosphine ligands to yield one of two unique cationic phosphine complexes depending on the ligand backbone length (en vs pn) and the identity of the phosphine ligand. Reduction of the Re(V) oxo core to Re(III) resulted on reaction of trans-[ReO(OH2)(acac2en)]Cl with triphenylphosphine or diethylphenylphosphine to yield a single reduced, disubstituted product of the general type trans-[Re(III)(PR3)2(acac2en)]+. Rather unexpectedly, a similar reaction with the stronger reducing agent triethylphosphine yielded the intramolecularly rearranged, asymmetric cis-[Re(V)O(PEt3)(acac2en)]+ complex. Reactions of trans-[Re(V)O(acac2pn)Cl] with the same phosphine ligands yielded only the rearranged asymmetric cis-[Re(V)O(PR3)(acac2pn)]+ complexes in quantitative yield. The compounds were characterized using standard spectroscopic methods, elemental analyses, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic data for the structures reported are as follows: trans-[Re(III)(PPh3)2(acac2en)]PF6 (H48C48N2O2P2Re.PF6), 1, triclinic (P), a = 18.8261(12) A, b = 16.2517(10) A, c = 15.4556(10) A, alpha = 95.522(1) degrees , beta = 97.130(1) degrees , gamma = 91.350(1) degrees , V = 4667.4(5) A(3), Z = 4; trans-[Re(III)(PEt2Ph)2(acac2en)]PF6 (H48C32N2O2P2Re.PF6), 2, orthorhombic (Pccn), a = 10.4753(6) A, b =18.4315(10) A, c = 18.9245(11) A, V = 3653.9(4) A3, Z = 4; cis-[Re(V)O(PEt3)(acac2en)]PF6 (H33C18N2O3PRe.1.25PF6, 3, monoclinic (C2/c), a = 39.8194(15) A, b = 13.6187(5) A, c = 20.1777(8) A, beta = 107.7730(10) degrees , V = 10419.9(7) A3, Z = 16; cis-[Re(V)O(PPh3)(acac2pn)]PF6 (H35C31N2O3PRe.PF6), 4, triclinic (P), a = 10.3094(10) A, b =12.1196(12) A, c = 14.8146(15) A, alpha = 105.939(2) degrees , beta = 105.383(2) degrees , gamma = 93.525(2) degrees , V = 1698.0(3) A3, Z = 2; cis-[Re(V)O(PEt2Ph)(acac2pn)]PF6 (H35C23N2O3PRe.PF6), 5, monoclinic (P2(1)/n), a = 18.1183(18) A, b = 11.580(1) A, c = 28.519(3) A, beta = 101.861(2) degrees , V = 5855.9(10) A(3), Z = 4.  相似文献   

8.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2000,39(12):2445-2451
Treatment of the complex [W(CO)5[PPh2(CS2Me)]] (2) with [Pd(PPh3)4] (1) affords binuclear complexes such as anti-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2Me)PPh2]W(CO)5] (3), syn-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2Me)PPh2]W(CO)5] (4), and trans-[W(CO)4(PPh3)2] (5). In 3 and 4, respectively, the W and Pd atoms are in anti and syn configurations with respect to the P-CS2 bond of the diphenyl(dithiomethoxycarbonyl)phosphine ligand, PPh2(CS2Me). Complex 3 undergoes extensive rearrangement in CHCl3 at room temperature by transfer of a PPh3 ligand from Pd to W, eliminating [W(CO)5(PPh3)] (7), while the PPh2CS2Me ligand transfers from W to Pd to give [[(Ph3P)Pd[mu-eta 1,eta 2-(CS2Me)PPh2]]2] (6). In complex 6, the [Pd(PPh3)] fragments are held together by two bridging PPh2(CS2Me) ligands. Each PPh2(CS2Me) ligand is pi-bonded to one Pd atom through the C=S linkage and sigma-bonded to the other Pd through the phosphorus atom, resulting in a six-membered ring. Treatment of Pd(PPh3)4 with [W(CO)5[PPh2[CS2(CH2)nCN]]] (n = 1, 8a; n = 2, 8b) in CH2Cl2 affords syn-[(Ph3P)2Pd[mu-eta 1,eta 2-[CS2(CH2)nCN]PPh2]W(CO)5] (n = 1, 9a; n = 2, 9b). Similar configurational products syn-[(Ph3P)2Pd[mu-eta 1,eta 2-(CS2R)PPh2]W(CO)5] (R = C2H5, C3H5, C2H4OH, C3H6CN, 11a-d) are synthesized by the reaction of Pd(PPh3)4 with [W(CO)5[PPh2(CS2R)]] (R = C2H5, C3H5, C2H4OH, C3H6CN, 10a-d). Although complexes 11a-d have the same configuration as 9a,b, the SR group is oriented away from Pd in the former and near Pd in the latter. In these complexes, the diphenyl(dithioalkoxycarbonyl)phosphine ligand is bound to the two metals through the C=S pi-bonding and to phosphorus through the sigma-bonding. All of the complexes are identified by spectroscopic methods, and the structures of complexes 3, 6, 9a, and 11d are determined by single-crystal X-ray diffraction. Complexes 3, 9, and 11d crystallize in the triclinic space group P1 with Z = 2, whereas 6 belongs to the monoclinic space group P2/c with Z = 4. The cell dimensions are as follows: for 3, a = 10.920(3) A, b = 14.707(5) A, c = 16.654(5) A, alpha = 99.98(3) degrees, beta = 93.75(3) degrees, gamma = 99.44(3) degrees; for 6, a = 15.106(3) A, b = 9.848(3) A, c = 20.528(4) A, beta = 104.85(2) degrees; for 9a, a = 11.125(3) A, b = 14.089(4) A, c = 17.947(7) A, alpha = 80.13(3) degrees, beta = 80.39(3) degrees, gamma = 89.76(2) degrees; for 11d, a = 11.692(3) A, b = 13.602(9) A, c = 18.471(10) A, alpha = 81.29(5) degrees, beta = 80.88(3) degrees, gamma = 88.82(1) degrees.  相似文献   

9.
p-tert-Butylcalix[4]arene, [CalixBut(OH)4], reacts with Mo(PMe3)6 and W(PMe3)4(eta2-CH2PMe2)H to yield compounds of composition {[CalixBut(OH)2(O)2]M(PMe3)3H2} which exhibit unprecedented use of a C-H bond of a calixarene methylene group as a binding functionality in the form of agostic and alkyl hydride derivatives. Thus, X-ray diffraction studies demonstrate that, in the solid state, the molybdenum complex [CalixBut(OH)2(O)2]Mo(PMe3)3H2 exists as an agostic derivative with a Mo...H-C interaction, whereas the tungsten complex exists as a metallated trihydride [Calix-HBut(OH)2(O)2]W(PMe3)3H3. Solution 1H NMR spectroscopic studies, however, provide evidence that [Calix-HBut(OH)2(O)2]W(PMe3)3H3 is in equilibrium with its agostic isomer [CalixBut(OH)2(O)2]W(PMe3)3H2. Dynamic NMR spectroscopy also indicates that the [M(PMe3)3H2] fragments of both the molybdenum and tungsten complexes [CalixBut(OH)2(O)2]M(PMe3)3H2 migrate rapidly around the phenolic rim of the calixarene on the NMR time scale, an observation that is in accord with incorporation of deuterium into the methylene endo positions upon treatment of the isomeric mixture of [CalixBut(OH)2(O)2]W(PMe3)3H2 and [Calix-HBut(OH)2(O)2]W(PMe3)3H3 with D2. Treatment of {[CalixBut(OH)2(O)2]W(PMe3)3H2} with Ph2C2 gives the alkylidene complex [CalixBut(O)4]W=C(Ph)Ar [Ar = PhCC(Ph)CH2Ph].  相似文献   

10.
Water-soluble phosphonate-functionalized triaryl phosphine ligands Na(2)[Ph(2)P(4-C(6)H(4)PO(3))].1.5H(2)O (4a), Na(2)[Ph(2)P(3-C(6)H(4)PO(3))].2H(2)O (4b), and Na(2)[Ph(2)P(2-C(6)H(4)PO(3))].2H(2)O (4c), were prepared in 54-56% yields by the transesterification and hydrolysis of the appropriate phosphonic acid diethyl ester precursors. The solubilities of 4a-c in water are compared and the spectroscopic properties studied in detail. The crystal structure of Na(2)[Ph(2)P(4-C(6)H(4)PO(3))(H(2)O)(3)(CH(3)OH)].CH(3)OH (monoclinic, P2(1)/n, a = 6.4457(8) ?, b = 8.1226(8) ?, c = 46.351(3) ?, beta = 92.902(8) degrees, Z = 4) shows a dimeric association via two bridging water molecules and four sodium ions. Reaction of 4a with PtCl(2)(PPh(3))(2) in a biphasic H(2)O/CH(2)Cl(2) mixture gives cis- and trans-Na(4)[PtCl(2){Ph(2)P(4-C(6)H(4)PO(3))}(2)]. 3H(2)O. Palladium dichloride and 4a in H(2)O/benzene catalyzes the carbonylation of benzyl chloride to give phenylacetic acid (91%).  相似文献   

11.
1,3,5-Benzenetriphosphonic acid, H6BTP, 1,3,5-[(HO)2OP]3C6H3, was reacted hydrothermally with copper salts in the absence and presence of 4,4'-bipyridine (bpy) and 4,4'-trimethlyenedipyridine (tbpy) in a 1:1 molar ratio leading to three new organic-inorganic hybrid frameworks. Compound 1, {Cu6[C6H3(PO3)3]2(H2O)8} x 5.5 H2O, has three different copper ions that are interconnected by the highly charged [1,3,5-(PO3)3C6H3]6- anionic moieties. These moieties self-assemble through tetra-copper units to give a cagelike motif with two benzene rings parallel to each other at a distance of 3.531 A which extend along the a axis and link with a grouping of four-coordinated copper units in the b axis direction to give the cross-linked layered structure. In compound 2, Cu{C6H3[PO(OH)O]2[PO(OH)2]}(C10H8N2), the copper ions are in square pyramidal geometries and are interconnected via chelating and bridging BTP ligands into layers which are further cross-linked by bpy ligands into a pillared layered architecture. Compound 3, {Cu2C6H3[PO(OH)O]2[PO3](C13H14N2)} x 3 H2O x 0.5 HCON(CH3)2, contains tetra-copper units that are linked by BTP ligands and further linked by tbpy linkers in the c axis direction to produce a large channel-sized 3D framework.  相似文献   

12.
Reaction of [Pd(PPh(3))(4)] with 1,1-dichloro-2,3-diarylcyclopropenes gives complexes of the type cis-[PdCl(2)(PPh(3))(C(3)(Ar)(2))] (Ar = Ph 5, Mes 6). Reaction of [Pd(dba)(2)] with 1,1-dichloro-2,3-diarylcyclopropenes in benzene gave the corresponding binuclear palladium complexes trans-[PdCl(2)(C(3)(Ar)(2))](2) (Ar = Ph 7, p-(OMe)C(6)H(4)8, p-(F)C(6)H(4)9). Alternatively, when the reactions were performed in acetonitrile, the complexes trans-[PdCl(2)(NCMe)(C(3)(Ar)(2))] (Ar = Ph 10, p-(OMe)C(6)H(4)11 and p-(F)C(6)H(4)) 12) were isolated. Addition of phosphine ligands to the binuclear palladium complex 7 or acetonitrile adducts 11 and 12 gave complexes of the type cis-[PdCl(2)(PR(3))(C(3)(Ar)(2))] (Ar = Ph, R = Cy 13, Ar = p-(OMe)C(6)H(4), R = Ph 14, Ar = p-(F)C(6)H(4), R = Ph 15). Crystal structures of complexes 6·3.25CHCl(3), 10, 11·H(2)O and 12-15 are reported. DFT calculations of complexes 10-12 indicate the barrier to rotation about the carbene-palladium bond is very low, suggesting limited double bond character in these species. Complexes 5-9 were tested for catalytic activity in C-C coupling (Mizoroki-Heck, Suzuki-Miyaura and, for the first time, Stille reactions) and C-N coupling (Buchwald-Hartwig amination) showing excellent conversion with moderate to high selectivity.  相似文献   

13.
The reaction of two equivalents of the functional phosphine ligand N-(diphenylphosphino)-1,3,4-thiadiazol-2-amine Ph2PNHC=NNCHS (2) with [PdCl2(NCPh)2] in the presence of NEt3 gives the neutral, P,N-chelated complex cis-[Pd(Ph2PN=CNN=CHS)2] ([Pd(2-H)2], 3b), which is analogous to the Pt(II) analogue cis-[Pt (Ph2PN=CNN=CHS)2] ([Pt(2-H)2], 3a) reported previously. These complexes function as chelating metalloligands when further coordinated to a metal through each of the CH-N atoms. In the resulting complexes, each endo-cyclic N donor of the thiadiazole rings is bonded to a different metal centre. Thus, the heterodinuclear palladium/platinum complexes cis-[Pt(Ph2PN=CNN=CHS)2PdCl2]([Pt(2-H)2·PdCl2], 4a) and cis-[Pd(Ph2PN=CNN=CHS)2PtCl2]([Pd(2-H)2·PtCl2], 4b) were obtained by reaction with [PdCl2(NCPh)2] and [PtCl2(NCPh)2], respectively. In contrast, reaction of 3a with [AuCl(tht)] occurred instead at the P-bound N atom, and afforded the platinum/digold complex cis-[Pt{Ph2PN(AuCl)=CNN=CHS}2] ([Pt(2-H)2(AuCl)2], 5). For comparison, reaction of 4a with HBF4 yielded cis-[Pt(Ph2PNH=CNN=CHS)2PdCl2](BF4)2([H24a](BF4)2, 6), in which the chelated PdCl2 moiety is retained. Complexes 3b, 4a·CH2Cl2, 4b·0.5C7H8, 5·4CHCl3 and 6 have been structurally characterized by X-ray diffraction.  相似文献   

14.
Structural investigation of Li-complexes of the phospha(III)guanidinate anion [Ph2PC[NiPr]2]- revealed variable coordination to lithium; synthesis of the dimethyl aluminium compound, (Ph2PC[NiPr]2)AlMe2, which behaves as a metal-functionalised phosphine ligand towards platinum, is reported.  相似文献   

15.
Addition of 1 equiv of Li(Ar2nacnac) (Ar2nacnac = (2,6-(i)Pr2C6H3)NC(Me)CHC(Me)N(2,6-(i)Pr2C6H3)) to an Et2O suspension of UO2Cl2(THF)3 generates the uranyl dimer [UO2(Ar2nacnac)Cl]2 (1) in good yield. A second species can be isolated in low yield from the reaction mixtures of 1, namely [Li(OEt2)2][UO2(Ar2nacnac)Cl2] (2). The structures of both 1 and 2 have been confirmed by X-ray crystallography. Complex 1 reacts with Ph3PO to generate UO2(Ar2nacnac)Cl(Ph3PO) (3). In addition, 1 reacts with AgOTf and either 1 equiv of DPPMO2 or 2 equiv of Ph2MePO to provide [UO2(Ar2nacnac)(DPPMO2)][OTf] (4) and [UO2(Ar2nacnac)(Ph2MePO)2][OTf] (5), respectively. Both 4 and 5 have been fully characterized, including analysis by X-ray crystallography and cyclic voltammetry. Reduction of 4 with Cp2Co provides UO2(Ar2nacnac)(CH{Ph2PO}2) (6), a uranyl(VI) complex that is generated by the formal loss of H* from the DPPMO2 ligand. Labeling studies have been performed in an attempt to elucidate the mechanism of hydrogen loss. In contrast, reduction of 5 with Cp2Co provides UO2(Ar2nacnac)(Ph2MePO)2 (7), a rare example of a uranyl(V) complex. As expected, the solid-state molecular structure of 7 reveals slightly longer U-O(oxo) bond lengths relative to 5. Furthermore, complex 7 can be converted back into 5 by oxidation with AgOTf in toluene.  相似文献   

16.
New cobalt-containing secondary phosphine oxides [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(H)(R)}] (8 a: R=tBu; 8 b: R=Ph) were prepared by reaction of secondary phosphine oxides PhC[triple chemical bond]CP- (==O)(H)(R) (6 a: R=tBu; 6 b: R=Ph) with dppm-bridged dicobalt complex [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(6)] (2). The molecular structures of 8 a and 8 b were determined by single-crystal X-ray diffraction. Although palladium-catalyzed Heck reactions employing 8 b as ligand gave satisfying results, 8 a performed poorly in the same reaction. Judging from these results, a tautomeric equilibrium between 8 b and its isomeric form [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(Ph)}] 8 b' indeed takes place, but it is unlikely between 8 a and [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(tBu)}] (8 a'). The DFT studies demonstrated that reasonable activation energies for the tautomeric conversions can be achieved only via a bimolecular pathway. Since a tBu group is much larger than a Ph group, the conversion is presumably only feasible in the case of 8 bright harpoon over left harpoon8 b', but not in the case of 8 aright harpoon over left harpoon8 a'. Another cobalt-containing phosphine, namely, [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(NEt(2))(tBu)}] (7 a), and its oxidation product [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(NEt(2))(tBu)}] 7 a' were prepared from the reaction of PhC[triple chemical bond]CP(NEt(2))(tBu) (5 a) with 2. The molecular structures of 7 a and 7 a' were determined by single-crystal X-ray diffraction. The phosphorus atom is surrounded by substituents in a tetrahedral environment. A P--N single bond (1.676(3) A) is observed in the molecular structure of 7 a. Heck reactions employing 7 a/Pd(OAc)(2) as catalyst system exhibited efficiency comparable to that of 8 a/Pd(OAc)(2).  相似文献   

17.
Direct sulphonation of 2-(diphenylphosphino)benzenesulphonic acid was extensively studied. The non-symmetrically functionalised reaction products obtained, related to the widely applied water soluble phosphine ligands m,m,m-TPPTS and m,m-TPPDS, display chelating κ(2)-(P,O)-coordination to Pd(II) metal centres. Phase transfer reaction of rac-o,m-TPPDS as the potassium salt with 18-crown-6 and complexation to Pd(II) gives the novel anionic catalyst precursor [K(18-crown-6)](2)[κ(2)(P,O){rac-o,m-TPPDS}PdMeCl] suitable for olefin polymerisation reactions. Ethene homo- and co-polymerisation reactions with polar functionalised olefins were investigated with this anionic phosphine sulphonate Pd(II)-based pre-catalyst salt.  相似文献   

18.
The new diphosphine ligands Ph(2)PC(6)H(4)C(O)X(CH(2))(2)OC(O)C(6)H(4)PPh(2) (1: X=NH; 2: X=NPh; 3: X=O) and Ph(2)PC(6)H(4)C(O)O(CH(2))(2)O(CH(2))(2)OC(O)C(6)H(4)PPh(2) (5) as well as the monophosphine ligand Ph(2)PC(6)H(4)C(O)X(CH(2))(2)OH (4) have been prepared from 2-diphenylphosphinobenzoic acid and the corresponding amino alcohols or diols. Coordination of the diphosphine ligands to rhodium, iridium, and platinum resulted in the formation of the square-planar complexes [(Pbond;P)Rh(CO)Cl] (6: Pbond;P=1; 7: Pbond;P=2; 8: Pbond;P=3), [(Pbond;P)Rh(CO)Cl](2) (9: Pbond;P=5), [(P-P)Ir(cod)Cl] (10: Pbond;P=1; 11: Pbond;P=2; 12: Pbond;P=3), [(Pbond;P)Ir(CO)Cl] (13: Pbond;P=1; 14: Pbond;P=2; 15: Pbond;P=3), and [(Pbond;P)PtI(2)] (18: Pbond;P=2). In all complexes, the diphosphine ligands are trans coordinated to the metal center, thanks to the large spacer groups, which allow the two phosphorus atoms to occupy opposite positions in the square-planar coordination geometry. The trans coordination is demonstrated unambiguously by the single-crystal X-ray structure analysis of complex 18. In the case of the diphosphine ligand 5, the spacer group is so large that dinuclear complexes with ligand 5 in bridging positions are formed, maintaining the trans coordination of the P atoms on each metal center, as shown by the crystal structure analysis of 9. The monophosphine ligand 4 reacts with [[Ir(cod)Cl](2)] (cod=cyclooctadiene) to give the simple derivative [(4)Ir(cod)Cl] (16) which is converted into the carbonyl complex [(4)Ir(CO)(2)Cl] (17) with carbon monoxide. The crystal structure analysis of 16 also reveals a square-planar coordination geometry in which the phosphine ligand occupies a position cis with respect to the chloro ligand. The diphosphine ligands 1, 2, 3, and 5 have been tested as cocatalysts in combination with the catalyst precursors [[Rh(CO)(2)Cl](2)] and [[Ir(cod)Cl](2)] or [H(2)IrCl(6)] for the carbonylation of methanol at 170 degrees C and 22 bar CO. The best results (TON 800 after 15 min) are obtained for the combination 2/[[Rh(CO)(2)Cl](2)]. After the catalytic reaction, complex 7 is identified in the reaction mixture and can be isolated; it is active for further runs without loss of catalytic activity.  相似文献   

19.
Lobana TS  Bhatia PK 《Talanta》1992,39(6):659-663
The extraction of iron(III) from thiocyanate medium was carried out with a synergic combination of 2,4-pentdione (Hacac) and either triphenyl phosphine oxide (Ph(3) PO) or bis (diphenylphosphinyl) alkanes, Ph(2)P(O)(CH(2))(n).P(O)PH(2) [ligand abbreviation, n: dpeO(2), 2; dpbO(2), 4]. Iron(III) was quantitatively separated from its binary mixture with chromium(III), manganese(III), cobalt(II), nickel(II), zinc(II), cadmium(II), mercury(II), lead(II), magnesium(II) and from steel samples. Copper(II) and silver(I) however, interfered. The percentage extraction was 99.0%. The respective extraction constants, K(HA), K(L) or K(syn), for the extracted species, [Fe(NCS)(acac)(2)(H(2)O)] (HA Hacac), Fe(NCS)(3)L(2) [L b Ph(3)PO, dpeO(2) or dpbO(2)], or Fe(NCS)(acac)(2)L were found to be: K(HA), 1.48 x 10(3), K(L), 1.80 x 10(2) (L Ph(3)PO), 2.02 x 10(2) (L dpeO(2) or dpbO(2)) and K(syn), 1.87 x 10(6) (L Ph(3)PO), 2.56 x 10(6) [L dpeO(2) or dpbO(2)].  相似文献   

20.
The hydrothermal reactions of a vanadium source, an appropriate diphosphonate ligand, and water in the presence of HF provide a series of compounds with neutral V-P-O networks as the recurring structural motif. When the {O3P(CH2)(n)PO3}4- diphosphonate tether length n is 2-5, metal-oxide hybrids of type 1, [V2O2(H2O){O3P(CH2)(n)PO3}] x xH2O, are isolated. The type 1 oxides exhibit the prototypical three-dimensional (3-D) "pillared" layer architecture. When n is increased to 6-8, the two-dimensional (2-D) "pillared" slab structure of the type 2 oxides [V2O2(H2O)4{O3P(CH2)6PO3}] is encountered. Further lengthening of the spacer to n = 9 provides another 3-D structure, type 3, constructed from the condensation of pillared slabs to give V-P-O double layers as the network substructure. When organic cations are introduced to provide charge balance for anionic V-P-O networks, oxides of types 4-7 are observed. For spacer length n = 3, a range of organodiammonium cations are accommodated by the same 3-D "pillared" layer oxovanadium diphosphonate framework in the type 4 materials [H3N(CH2)(n)NH3][V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [n = 2, x = 6 (4a); n = 3, x = 3 (4b); n = 4, x = 2 (4c); n = 5, x = 1 (4d); n = 6, x = 0.5 (4e); n = 7, x = 0 (4f)] and [H3NR]y[V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [R = -CH2(NH3)CH2CH3, y = 1, x = 0 (4g); R = -CH3, n = 2, x = 3 (4h); R = -CH2CH3, y = 2, x = 1 (4i); R = -CH2CH2CH3, y = 2, x = 0 (4j); cation = [H2N(CH2CH3)2], y = 2, x = 0 (4k)]. These oxides exhibit two distinct interlamellar domains, one occupied by the cations and the second by water of crystallization. Furthermore, as the length of the cation increases, the organodiammonium component spills over into the hydrophilic domain to displace the water of crystallization. When the diphosphonate tether length is increased to n = 5, structure type 5, [H3N(CH2)2NH3][V4O4(OH)2(H2O){O3P(CH2)5PO3}2] x H2O, is obtained. This oxide possesses a 2-D "pillared" network or slab structure, similar in gross profile to that of type 2 oxides and with the cations occupying the interlamellar domain. In contrast, shortening the diphosphonate tether length to n = 2 results in the 3-D oxovanadium organophosphonate structure of the type 7 oxide [H3N(CH2)5NH3][V3O3{O3P(CH2)2PO3}2]. The ethylenediphosphonate ligand does not pillar V-P-O networks in this instance but rather chelates to a vanadium center in the construction of complex polyhedral connectivity of 7. Substitution of piperazinium cations for the simple alkyl chains of types 4, 5, and 7 provides the 2-D pillared layer structure of the type 6 oxides, [H2N(CH2CH2)NH2][V2O2{O3P(CH)(n)PO3H}2] [n = 2 (6a); n = 4 (6b); n = 6 (6c)]. The structural diversity of the system is reflected in the magnetic properties and thermal behavior of the oxides, which are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号