首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分段函数f(x)的求导步骤可归结为:一、如果函数在各段开区间内可导,则可求出它在各开区间内的导数.二、判断分界点x_0处的可导性:1.若函数在x_0点不连续,则它在x_0点不可导.2.若函数在x_0点连续,且在x_0的邻域内(x_0除外)可导,则(1)当(?)f′(x)存在,设为A时,函数f(x)在x_0点可导,且f′(x_0)=A;  相似文献   

2.
关于反函数的导数,在斯米尔诺夫著的《高等教学教程》第一卷(修订本)的106页给出了如下定理: “若f(x)在点x_0有异于零的导数f′(x_0),则反函数φ(y)在点y_0=f(x_0)有导数  相似文献   

3.
求分段函数在分段点处的导数,包括讨论它是否存在,一般都应根据导数的定义,并利用导数存在的充要条件,即“左、右导数均存在且相等”,才能确定函数在分段点处的导数是否存在。如存在,则可得到函数在该分段点处的导数值。笔者发现,经常出现不用导数定义讨论的情况。现举例剖析如下。1.盲目地用上“分段函数的导函数在分段点处连续”的条件。例1设函数问f(0)是否存在?解法一按导数定义,f(X)在X=0处的左、右导数分别为由于/-(0)一/+(0)一0,所以/(0)存在,且/(0)一见解法二当X<O时,/(X)一(X勺‘一ZX,所…  相似文献   

4.
求作初等曲线的切线,方法较多,文章屡有发表。本文试图从导数的应用出发,另辟道路,作出新的尝试。可供中学教师作为辅导学生课外活动时参考。 函数y=f(x)在点x_0处的导数f′(x_0)的几何意义,就是曲线y=f(x)在点x_0处的切线的斜率。  相似文献   

5.
<正> 复变函数论是数学分析在复数域中的进一步发展和推广,它的许多概念和定理与数学分析中的理论相类似.复变函数的极限、连续以及导数与微分的定义.形式上和数学分析中一元函数的相应定义一致.比如,在数学分析的微分学中,对一元函数的导数是这样定义的:设函数y=f(x)在点x_0的某一邻域内有定义(包括x_0点),当自变量x在x_0处有增量(?)时,相应地函数有增量△y=f(x_0+△x)-f(z),当△x→0时,比值的极限存在,称此极限为函数y=f(x)在x_0处的导数.记为f’(x).复变函数的导数定义为:设函数w=f(z)在  相似文献   

6.
设一条曲线的方程为y=f(x).该曲线在点M(x_0,y_0)处的曲率圆在切点附近的一支曲线方程设为y=g(x),并设f(x)在x=x_0附近有三阶连续导数,且f″(x_0)≠0.将f(x)-g(x)在x=x_0处展开为二阶泰勒公式(注意到 f(x_0)=g(x_0),f′(x_0)=g′(x_0)及f″(x_o)=g″(x_0):  相似文献   

7.
考虑分段函数在分界点处的可导性时,一个方法是:根据命题“函数f(x)在x=x_0处可导的必要充分条件是其左导数f_-~′(x_0)和右导数f_+~′(x_0)都存在且相等”,利用左、右导数定义考察左、右导数是否存在且相等.但是由定义求导数常使人感到不便.一些同学自然地想到用另一种方便的方法:先分别求x_0左右两段f(x)的导函数f′(x),再考察其左极限  相似文献   

8.
六、掌握微分学的两个基本概念 数学分析的主体内容是微积分。研究导数的理论通常称为微分学。导数与微分是微分学的两个基本概念,掌握好这两个概念必须能回答下列问题: 1.导数概念是有哪些物理模型中抽象出来的? 2.函数f在x_0点可导(左侧可导、右侧可导)与函数f在x_0点的导数(左导数、右导数)这  相似文献   

9.
<正> 现行《数学分析》和《高等数学》各本教材中,都有二元函数的可微性充分条件的定理:如果函数z=f(x,y)的编导数在点P(x,y)连续,则函数在该点的全微分存在.由于此定理要求两个偏导数在点(x_0,y_0)都连续.这对函数f(x,y)的要求是比较苛刻的,可是我们经常会遇到函数u=f(z,y)在点(x_0,y_0)的某一个偏导数存在而不连续,而另一个偏导数存在且连续.遇到这类函数就无法用可微性充分条件定理去判定函数u=f(x,y)在点(x_0,y_0)是否可微.  相似文献   

10.
<正> 现行《数学分析》和《高等数学》各本教材中,都有二元函数的可微性充分条件的定理为:如果函数z=f(x,y)的偏导数?z/?x,?z/?y在点P(x,y)连续,则函数在该点的全微分存在。由于此定理要求两个偏导数在点(x_0,y_0)都连续,所以对函数f(x,y)的要求就比较苛刻,可是我们经常会遇到函数u=f(x,y)在点(x_0,y_0)的某一个偏导数存在但这个偏导数不连续,而  相似文献   

11.
本文引进n元实变函数的广义n阶导数,证明:若n元分布函数F(x_1,…,x_n)有概率密度函数f(x_1,…,x_n)且f(x_1,…,x_n在点(x_1,…,x_n)处连续,则f(x_1,…,x_n)等于F(x_1,…,x_n)在点(x_1,…,x_n)处的广义n阶导数,但当n≥2时,f(x_1,…,x_n)并不总等于F(x_1,…,x_n)在点(x_1,…,x_n)处的n阶混合偏导数?~nF(x_1,…,x_n)/?x_1…?x_n  相似文献   

12.
讨论函数f(x)的单调性是导数应用的重要部分,我们现有的微积分教材皆有如下定理: 定理1.设函数f(x)在区间(a,b)内可导,且f′(x)>0(或f′(x)<0),则f(x)在(a,b)内为增加函数(或减少函数)。利用拉格朗日中值定理来证明定理1是显然的,人人能懂,但是若问,f′(x_0)>0(或f′(x_0)<0)时,f(x)在点x_0处是否单调函数,人们理解就不一致了。为了回答这一问题,看下边定理: 定理2.设函数f(x)在区间(a,b)内一点x_0处可导,且f′(x_0)>0(或f′(x_0)<0),则f(x)在点x_0处为增加函数(或减少函数)。证明:因f(x)在点x_0处可导,即极限  相似文献   

13.
不少学生学习了求导公式后 ,往往对导数定义不太重视。其实 ,导数的定义不仅是导数的原始基本概念 ,而且它在求极限、求导数的计算及证明中都有着重要的、甚至是不可替代的作用。本文仅就导数定义在导数计算中的地位与作用问题谈点粗浅的认识 ,以期学生对此问题引起重视。一、在分段函数求导计算中的情形对分段函数分段点的导数的计算 ,必须按定义求 ,不能套公式。例 1 设 f ( x) =e|x|,求 f′( x)。[错解 ] 因为 f ( x) =ex,   x≥ 0e- x,  x <0 ,所以 ,f′( x) =ex,   x≥ 0-e- x,  x <0[辨析 ]  x=0是分段点 ,而对分段点的导数 …  相似文献   

14.
<正> 复变函数论是数学分析在复数域中的进一步发展和推广,它的许多概念和定理与数学分析中的理论相类似。复变函数的极限、连续以及导数与微分的定义,形式上和数学分析中一元函数的相应定义一致。比如,在数学分析的微分学中,对一元函数的导数是这样定义的:设函数y=f(x)在点x_0的某一邻域内有定义(包括x_0点),当自变量x在x_0处有增量Δ_x时,相应地函数有增量Δ_y=f(x_0+Δx)-f(x),当Δ_x→0时,比值的极限  相似文献   

15.
<正> 多元函数的连续性、偏导数、可微性是高等数学中的基本概念,它们的相互关系与一元函数的连续、可导、可微之间的关系是不同的。在工科高等数学教材(?)理科的数学分析教材中都叙述并证明了定理:若f′_x(x,y,),f′_y(x,y)在点(x_0,y_0)处连续,则f(x,y)在点(x_0,y_0)  相似文献   

16.
对分段函数,我们常见的一类问题是讨论它在分界点的可导性.按常规的做法,分段函数在分界点处的导数用定义去计算,但在学生学习中,有不少学生不愿也不易接受这种方法,而是采用对不同区间上函数求导来计算,这种做法在一定条件下是可行的,这里就这类问题通过一些实例分析说明.对分段函数f(X),讨论在分界点X0X0的可导性,归纳一般步骤如下:1.若f(X)在点X0不连续,则它在点X0不可导;2.若f(X)在点工。连续,且在点X0左、右导数都存在且相等,则f(X)在点X0可导.对如上第二步中,左、右导数一般用定义计算,但在函数满足…  相似文献   

17.
本文讨论分段函数的求导问题,建立了求导时方法选取的一般程式。对于含绝对值的函数,给出了一个求导定理。一、分段函数的导数分段函数的求导,关键在于求分段点处的导数,常用方法有:①不连续则不可导;②导数或左右导数的定义;③导数单侧极限定理*:设f(x)在(a,b)内连续,x0∈(a,b),在(a,x0)及(x0,b)内可导且limf(x)、limf(x)都存在,则导数单侧极限定理用左右导数定义及微分中值定理可证,此处从略。下面仅作几点说明:1“定理中若厂十(X。)一片一(X。),则几X)在X。处可导,若不相等,则人X)在X。处不…  相似文献   

18.
函数f(x)在点x_0取得极值的一个充分条件是:若存在δ>o,使:(i)f(x)在(x_0-δ,x_0]是单值、单调增加的函数,而在[x_0,x δ)是单值、单调减少的函数,则f(x)在x_0取极大值.(ii)f(x)在(x_0-δ,x_0]是单值、单调减少的函数,而在[x_0,x_0 δ)是单值、单调增加的函数,则f(x)在x_0点取极小值.  相似文献   

19.
如何判断分段函数在分段点处可导性,并求出导数?通常的作法(1)先判断连续性,若不连续,必不可导.(2)如果连续,再按导数的定义求导,由于在分段点两侧,函数表达式可能不同,则一般要通过计算分段点处左右导数来判断.实际上,在函数连续的基础上,可借助导函数在分段点处的极限,来判定并求出分段点的导数.这是因为有如下的定理:  相似文献   

20.
摆脱限制,力求更灵活的运算,从来就是数学上的大问题。对二元函数f(x,y)来说,如果等式成立,则意味着:在求函数f(x,y)在点p_0(x_0,y_0)的二阶偏导数时,不受求导次序的限制;或  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号