首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Cu(II)-imprinted interpenetrating polymer network (IPN) gel of epoxy-diethylenetriamine and methacrylic acid-acrylamide-N,N′-methylene-bis-(acrylamide) was synthesized by the ionic imprint polymer (IIP) technique. The first polymer network is formed by epoxy gelation with diethylenetriamine. The other is formed by copper methacrylate co- polymerization with acrylamide and cross-linker N,N′-methylene-bis-(acrylamide). The adsorption–desorption characteristics of the IPN gel as a highly selective solid-phase extraction (SPE) and preconcentration adsorbent for Cu2+ from aqueous solution were investigated. The experimental results show that trace Cu2+ ions can be quantitatively enriched at pH 5 with recovery >95%. The maximum static adsorption capacity of the ion-imprinted functionalized gel adsorbent was 76 mg g−1. Comparing with non-imprinted IPN gel, the imprinted IPN gel has higher adsorption capacity and selectivity for Cu2+ by the static adsorption–desorption experiment. Simultaneously, the times of adsorption equilibration and complete desorption were remarkably short. The precision (RSD) for 11 replicate adsorbent extractions of 20 ng mL−1 Cu2+ was 3.4%. The established procedure was applied to two real water samples with satisfactory results. The prepared ion-imprinted IPN gel adsorbent was shown to be promising for solid-phase extraction coupled with atomic absorption spectrometry (AAS) for the determination of trace copper in real samples. In addition, the coordination interaction of Cu2+ and functional groups of the IPN gel adsorbent was primarily discussed by FT-IR spectra.  相似文献   

2.
Supermacroporous poly{2-hydroxyethyl methacrylate-co-[N,N-bis(2,6-diisopropylphenyl)-perylene-3,4,9,10-tetracarboxylic diimide]} [poly(HEMA-co-DIPPER)] monolithic cryogel column was prepared by radical cryocopolymerization of HEMA with DIPPER as functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as crosslinker directly in a plastic syringe for adsorption of albumin. The monolithic cryogel contained a continuous polymeric matrix having interconnected pores of 10–50 μm size. Poly(HEMA-co-DIPPER) cryogel was characterized by swelling studies, FTIR, scanning electron microscopy, and elemental analysis. The equilibrium swelling degree of the poly(HEMA-co-DIPPER) cryogel was 14.7 g H2O/g dry cryogel. Poly(HEMA-co-DIPPER) cryogel was used in the adsorption/desorption of albumin from aqueous solutions. The nonspecific adsorption of albumin onto plain poly(HEMA) cryogel was very low (3.36 g/g polymer). The maximum amount of albumin adsorption from aqueous solution in acetate buffer was 40.9 mg/g polymer at pH 5.0. It was observed that albumin could be repeatedly adsorbed and desorbed with the poly(HEMA-co-DIPPER) cryogel without significant loss of adsorption capacity.  相似文献   

3.
A magnetic molecularly imprinted polymer (M-MIP) of bisphenol A (BPA) was prepared by miniemulsion polymerization. The morphological and magnetic characteristics of the M-MIP were characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. The adsorption capacities of the M-MIP and the nonimprinted polymer were investigated using static adsorption tests, and were found to be 390 and 270 mg g−1, respectively. Competitive recognition studies of the M-MIP were performed with BPA and the structurally similar compound DES, and the M-MIP displayed high selectivity for BPA. A method based on molecularly imprinted solid-phase extraction assisted by magnetic separation was developed to extract BPA from environmental water and milk samples. Various parameters such as the mass of sorbent, the pH of the sample, the extraction time, and desorption conditions were optimized. Under selected conditions, extraction was completed in 15 min. High-performance liquid chromatography with UV detection was employed to determine BPA after the extraction. For water samples, the developed method exhibited a limit of detection (LOD) of 14 ng L−1, a relative standard deviation of 2.7% (intraday), and spiked recoveries ranging from 89% to 106%. For milk samples, the LOD was 0.16 μg L−1, recoveries ranged from 95% to 101%, and BPA was found in four samples at levels of 0.45–0.94 μg L−1. The proposed method not only provides a rapid and reliable analysis but it also overcomes problems with conventional solid-phase extraction (SPE), such as the packing of the SPE column and the time-consuming nature of the process of loading large-volume samples.  相似文献   

4.
Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) has been widely used as a biomarker of oxidative DNA damage. Measurements of 8-OHdG in urinary samples are challenging owing to the low level of 8-OHdG and the complex matrix. In this study, a novel molecularly imprinted polymer (MIP) monolithic column was synthesized with guanosine as a dummy template which was used as the medium for in-tube solid-phase microextraction (SPME). In-tube SPME coupled with HPLC/UV detection for extraction and determination of urinary 8-OHdG was developed. The synthesized MIP monolithic column exhibited high extraction efficiency owing to its greater phase ratio with convective mass transfer and inherent selectivity. The enrichment factor for 8-OHdG was found to be 76 and the limits of detection and quantification of the method for urinary samples were 3.2 nmol/L (signal-to-noise ratio 3) and 11 nmol/L (signal-to-noise ratio 10), respectively. The MIPs selectivity also made the sample preparation procedure and chromatographic separation much easier. The linear range of the proposed method was from 0.010 to 5.30 μmol/L (r = 0.9997), with a relative standard deviation of 1.1–6.8%, and the recovery for spiked urine samples was 84 ± 3%. The newly developed method was successfully applied to determine urinary samples of healthy volunteers, coking plant workers, and cancer patients. The 8-OHdG level in cancer patients was significantly higher than that in healthy people.  相似文献   

5.
To obtain a highly selective material for the antibiotic chloramphenicol, which has several harmful side effects in humans, different molecularly imprinted polymers (MIPs) were prepared. In order to avoid a major traditional drawback associated with MIPs of residual template bleeding, molecules that are structurally related to chloramphenicol were used as templates for polymer synthesis. Chromatographic evaluation indicated that the employed template imparted a significant influence on the recognition properties of the corresponding polymer. A strong retention of chloramphenicol under nonpolar elution conditions (k = 68.03, IF = 17.72) and under aqueous elution conditions (k = 92.44, IF = 1.35) was achieved. After chromatographic evaluation, the MIP was utilized as the recognition sorbent in a solid-phase extraction to determine chloramphenicol using either an organic or aqueous washing solvent. Recoveries of nearly 100% from the chloramphenicol standard solution and nearly 90% from honey samples spiked with chloramphenicol were attained. Furthermore, the applicability of the MIP for sample cleanup was demonstrated.  相似文献   

6.
Synthetic materials that can specifically recognize proteins will find wide application in many fields.In this report,bovine serum albumin was chosen as the template protein.Acrylamide and N,N’-methylenebisacrylamide were employed as the functional and cross-linker monomers,respectively.Molecularly imprinted macroporous monolithic materials that can preferentially bind the template protein in an aqueous environment were prepared by combination of molecular imprinting technique and freezing/thawing preparation method.The resulted imprinted macroporous monolithic columns were evaluated by utilizing as stationary phase in high performance liquid chromatography and solid-phase extraction materials.The experimental results indicated that the imprinted macroporous monolithic column exhibited good recognition for template protein,as compared with the control protein(hemoglobin),whereas the non-imprinted polymer(prepared under the same conditions except without addition template protein) had no selective properties.  相似文献   

7.
Ou J  Hu L  Hu L  Li X  Zou H 《Talanta》2006,69(4):1001-1006
The bisphenol A (BPA) imprinted monolithic precolumn has been prepared by in situ polymerization using 4-vinylpyridine (4-VP) and ethylene dimethacrylate (EDMA) as functional monomer and cross-linker, respectively. The column with good flow-through property was obtained by changing the molar ratio of the porogens (toluene and dodecanol). The selectivity and retention properties of the monolith for the BPA and other phenolic compounds were evaluated. The results show that the hydrophobic and hydrogen-bonding interaction plays important roles in the recognition process. The determination of BPA and other phenolic compounds with on-line solid-phase extraction (SPE) by monolithic precolumn coupled with conventional particulates packed and monolithic reversed-phase columns, respectively, was performed. The method was successfully applied to the analysis of phenolic compounds in river water.  相似文献   

8.
The use of molecularly imprinted polymers (MIPs) prepared by ring-opening metathesis polymerization (ROMP) for bisphenol A (BPA) was reported in this article. The resulting MIPs have high imprinting and adsorption capacities, and can be used for separation and determination of BPA in environmental water samples. The successful application of ROMP in the molecular imprinting field is described here. For the first time, two cross-linkers (dicyclopentadiene and 2,5-norbornadiene) and two Grubbs catalysts (first and second generation) were investigated to compare their effects on the binding performance of MIPs. The ROMP technique is able to create the imprinted polymers within 1 h under mild conditions. Furthermore, it can provide MIPs with obvious imprinting effects towards the template, very fast template rebinding kinetics, high binding capacity and appreciable selectivity over structurally related compounds. The adsorption process for MIPs in this study can be completed within 45 min, which is much faster than that of bulk MIPs synthesized by traditional free-radical polymerization. The resulting imprinting polymer was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from diluted aqueous samples. The optimized extraction protocol resulted in a reliable MISPE method suitable for selective extraction and preconcentration of BPA from tap water, human urine and liquid milk samples. This article demonstrates the practical feasibility of the MIPs prepared via ROMP as solid-phase extraction materials.  相似文献   

9.
A bisphenol A (BPA) molecularly imprinted polymer, the composition of which was optimised using a chemometric approach, has been applied to the selective preconcentration of the template from aqueous samples. The selectivity of the polymer toward BPA and related compounds was evaluated chromatographically. The BPA-imprinted polymer was packed in a column and used for continuous on-column solid-phase extraction (MISPE) of aqueous samples followed by subsequent analysis by HPLC with fluorescence detection of the eluted fractions. The composition of the washing solvent applied in the MISPE procedure was optimised to favour the specific interactions of the MIP with BPA and to remove the non-selectively bound matrix components. The MISPE method has proven to be effective for selective preconcentration of BPA in aqueous samples (recoveries >84% obtained in the eluate for 10–100 mL sample volumes) enabling detection and quantification limits of 1.0 and 3.3 ng mL–1, respectively (based on 25 mL sample size). Analytical recoveries were between 92 and 101% for river water samples spiked with known amounts of BPA (30, 60, and 80 ng mL–1); relative standard deviations (RSD) were lower than 5.0%.  相似文献   

10.
 Spherical polymeric microparticles have been prepared by a reverse-phase suspension polymerization technique. The starting polymer was α,β-poly (N-2-hydroxyethyl)-dl-aspartamide (PHEA) partially functionalised with glycidylmethacrylate (GMA) in order to introduce reactive vinyl groups in the side chain. The PHEA–GMA copolymer obtained (PHG) was cross-linked in a mixture of water/hexane–carbon tetrachloride in the presence of sorbitan trioleate (Span 85) as surfactant and ammonium persulfate/N,N,N′,N′-tetramethylethylenediamine as initiator system. The reaction was also carried out in the presence of N,N′-dimethylacrylamide as comonomer or N,N′-ethylenebisacrylamide as a cross-linking agent. The beads obtained were characterized by Fourier transformIR spectrophotometry, particle size distribution analysis and scanning electron microscopy, which revealed their microporous structure. X-ray diffractometry and differential scanning calorimetry showed the amorphous state and the dependence of the glass-transition temperature on the chemical structure of the samples prepared, respectively. Finally, in order to have information on the water affinity of the networks obtained, swelling measurements were performed. The water regain values and the high rate of swelling demonstrate a remarkable ability of the samples investigated to entrap water molecules. The dependence of aqueous swelling on the degree of cross-linking and the chemical structure of the samples is also shown. Received: 8 August 2000 Received in revised form: 6 November 2000 Accepted: 14 November 2000  相似文献   

11.
Molecularly imprinted polymers (MIPs) were prepared using bisphenol A (BPA) as a template by precipitation polymerization. The polymer that had the highest binding selectivity and ability was used as solid-phase extraction (SPE) sorbents for direct extraction of BPA from different biological and environmental samples (human serum, pig urine, tap water and shrimp). The extraction protocol was optimized and the optimum conditions were as follows: conditioning with 5 mL methanol–acetic acid (3:1), 5 mL methanol, 5 mL acetonitrile and 5 mL water, respectively, loading with 5 mL aqueous samples, washing with 1 mL acetonitrile, and eluting with 3 mL methanol. MIPs can selectively recognize, effectively trap and preconcentrate BPA over a concentration range of 2–20 μM. Recoveries ranged from 94.03 to 105.3 %, with a relative standard deviation lower than 7.9 %. Under the optimal condition, molecularly imprinted SPE recoveries of spiked human serum, pig urine, tap water and shrimp were 65.80, 82.32, 76.00 and 75.97 %, respectively, when aqueous samples were applied directly. Compared with C18 SPE, a better baseline, better high-performance liquid chromatography separation efficiency and higher recoveries were achieved after molecularly imprinted SPE.   相似文献   

12.
A rapid, specific, and sensitive method has been developed using molecularly imprinted polymers (MIPs) as solid-phase extraction sorbents for extraction of trace tetracycline antibiotics (TCs) in foodstuffs. MIPs were prepared by precipitation polymerization using tetracycline as the template. Under the optimal condition, the imprinting factors for MIPs were 4.1 (oxytetracycline), 7.0 (tetracycline), 7.4 (chlortetracycline), 7.7 (doxycycline), respectively. Furthermore, the performance of MIPs as solid-phase extraction sorbents was evaluated and high extraction efficiency of molecularly imprinted solid-phase extraction (MISPE) procedure was demonstrated. Compared with commercial sorbents, MISPE gave a better cleanup efficiency than C18 cartridge and a higher recovery than Oasis HLB cartridge. Finally, the method of liquid chromatography–tandem mass spectrometry coupled with molecular-imprinted solid-phase extraction was validated in real samples including lobster, duck, honey, and egg. The spiked recoveries of TCs ranged from 94.51% to 103.0%. The limits of detection were in the range of 0.1–0.3 μg kg−1. Chromatograms obtained by direct injection of the spiked egg extracts (5 × 10-3 mmol L−1) and purification with MISPE  相似文献   

13.
In the present work, an analytical methodology based on molecularly imprinted solid-phase extraction (MISPE) has been developed for the determination of bisphenol A (BPA) in environmental and food samples. In order to select the optimum material, a combinatorial library of molecularly imprinted polymers in small-scale (mini-MIPs) was prepared using BPA as template. Different monomers (methacrylic acid or 4-vinylpyridine), crosslinkers (ethylene glycol dimethacrylate or trimethylolpropane trimethacrylate) and porogens (methanol, acetonitrile or toluene) were used leading to 24 different polymerisation mixtures. After BPA removal, the ability of mini-MIPs to recognise BPA was evaluated by equilibrium rebinding-elution experiments. The copolymer of 4-vinylpyridine (4-VP) and trimethylolpropane trimethacrylate (TRIM) prepared in toluene showed the higher affinity for the template. Subsequently, a scaled-up version of the optimum polymer was prepared and used in the development of MISPE procedures for the extraction of BPA. The optimised MISPE protocols were successfully applied to the selective extraction of BPA from soils and aqueous canned peas samples.  相似文献   

14.
Bisphenol A (BPA) is a synthetic industrial reactant used in the production of polycarbonate plastics, and genistein is a natural phytoestrogen abundant in the soybean. Current studies investigating the endocrine-disrupting effects of concomitant exposures to BPA and genistein have warranted the development of an analytical method for the simultaneous measurement of BPA and genistein, as well as their primary metabolites, bisphenol A ?-d-glucuronide (BPA gluc) and genistein 4′-?-d-glucuronide (genistein gluc), respectively. All four analytes were extracted from rat plasma via solid phase extraction (SPE). Three SPE cartridges and four elution schemes were tested. Plasma extraction using Bond Elut Plexa cartridges with sequential addition of ethyl acetate, methanol, and acetonitrile yielded optimal average recoveries of 98.1 ± 1.8% BPA, 94.9 ± 8.0% genistein, 91.4 ± 6.1% BPA gluc, and 103 ± 6.1% genistein gluc. Identification and quantification of the four analytes were performed by a validated HPLC-MS/MS method using electrospray ionization and selective reaction monitoring. This novel analytical method should be applicable to the measurement of BPA, genistein, BPA gluc, and genistein gluc in urine, cultures, and tissue following in vivo exposures. While reports of the determination of BPA and genistein independently exist, the simultaneous optimized extraction and detection of BPA, genistein, BPA gluc, and genistein gluc have not previously been reported.  相似文献   

15.
A novel water-compatible molecularly imprinted polymer (MIP), prepared with enrofloxacin (ENR) as the template, has been optimised for the selective extraction of fluoroquinolone antibiotics in aqueous media. The results of a morphological characterisation and selectivity tests of the polymer material for ENR and related derivatives are reported. High affinity for the piperazine-based fluoroquinolones marbofloxacin, ciprofloxacin, norfloxacin and ofloxacin was observed, whereas no retention was found for nonrelated antibiotics. Various parameters affecting the extraction efficiency of the polymer have been optimised to achieve selective extraction of the antibiotics from real samples and to reduce nonspecific interactions. These findings resulted in a MISPE/HPLC-FLD method allowing direct extraction of the analytes from aqueous samples with a selective wash using just 50% (v/v) organic solvent. The method showed excellent recoveries and precision when buffered urine samples fortified at five concentration levels (25–250 ng mL−1 each) of marbofloxacin, ciprofloxacin, norfloxacin, enrofloxacin and sarafloxacin were tested (53–88%, RSD 1–10%, n = 3). Moreover, the biological matrix of the aqueous samples did not influence the preconcentration efficiency of the fluoroquinolones on the MIP cartridges; no significant differences were observed between the recovery rates of the antibiotics in buffer and urine samples. The detection limits of the whole process range between 1.9 and 34 ng mL–1 when 5-mL urine samples are processed. The developed method has been successfully applied to preconcentration of norfloxacin in urine samples of a medicated patient, demonstrating the ability of the novel MIP for selective extraction of fluoroquinolones in urine samples.  相似文献   

16.
Two types of macroporous organic polymer monoliths based on glycidyl methacrylate (GMA), 4-vinylbenzyl chloride (VBC) and divinylbenzene (DVB) were prepared inside stainless-steel tubes. Azide functionalities were firstly introduced on the surfaces of poly(GMA-co-DVB) and poly(VBC-co-DVB) monoliths to provide reactive sites for click chemistry. With the application of copper(I)-catalyzed (3 + 2) azide-alkyne cycloaddition, an in-column click-modification approach for covalent attachment of long alkyl chains onto polymer monoliths was developed. The column morphology and surface chemistry of the fabricated monolithic columns were characterized by the scanning electron microscopy, mercury intrusion porosimeter, Fourier transform infrared spectroscopy, and elemental analyses, respectively. The chromatographic performances of the “clicked” stationary phases were demonstrated with the high separation efficiency for a variety of proteins within 4 min.  相似文献   

17.
Self-consistent-field computations shed light on two relevant conformations of deoxyadenosine (dA) and deoxyguanosine (dG): one with a pseudoequatorial C1′N9 glycosyl bond and the other, a slightly more stable one, with its C1′N9 bond in a bisectional orientation. In dA, both the N3 and N7 nitrogens are plausible sites for electrophilic attack, but only N7 is a plausible site in dG. The addition of H+, CH3 +, C2H5 + or tert-C4H9 + onto N7 does not provoke notable structural modifications and leaves the base of dA and dG in an antiperiplanar (or nearly antiperiplanar) position with respect to the sugar C1′O4′ bond, but N3 additions cause the base to adopt a synperiplanar or strongly chiral position. This produces strong interactions between the purine and deoxyribose moieties, whose relief could aid the eventual cleavage of the glycosyl bond of dA. Addition of a radical cation onto N7 reduces the dissociation energy of the glycosyl bond by an estimated 8 kcal mol−1 in dA and 4 kcal mol−1 in dG – a bond weakening likely to concur to a depurination of DNA induced by radical cations. Received: 13 September 1999 / Accepted: 3 February 2000 / Published online: 21 June 2000  相似文献   

18.
The extraction of uranyl nitrate with the novel extractant N,N′-dimethyl-N,N′-dioctylmalonamide (DMDOMA) from aqueous sodium nitrate (and nitric acid) was investigated. The extraction mechanism was established and the stoichiometry of the main extracted species confirms to UO2(NO3)2 · DMDOMA. The IR spectral study was also made of the extracted species. Methyl substituent improves the extraction ability of malonamide for U(VI) compared with that of N,N,N′,N′-tertrabutylmalonamide (TBMA).  相似文献   

19.
Guanidinoacetate methyltransferase deficiency is a recently discovered inborn defect of creatine biosynthesis which reduces serum creatinine concentrations to as low as 0.58 μg mL−1 (or 0.00058 μg mL−1 after 1,000-fold dilution). To measure ultra trace levels of creatinine in diluted samples, molecularly imprinted solid-phase extraction (MISPE) and molecularly imprinted polymer (MIP) sensor techniques have been found to be inadequate. A combination of these techniques (i.e. MISPE hyphenated with use of an MIP-sensor), reported in this paper, has been found to be highly suitable for direct assay of creatinine in highly diluted human blood serum without complicated pretreatment of the sample. The proposed technique has the potential to enhance the sensitivity of creatinine measurement from μg mL−1 to ng mL−1 in highly dilute aqueous samples in which the concentrations of interfering constituents are reduced to negligible levels. In this work the sensitivity to creatinine was found to be improved compared with that of the MIP-sensor method alone (limit of detection, LOD, 0.00149 μg mL−1). After preconcentration by MISPE and use of the sensor the detection limit for creatinine was as low as 0.00003 μg mL−1 (RSD = 0.94%, S/N = 3; 50-fold preconcentration factor) in aqueous samples.  相似文献   

20.
This study presents a selective method of isolation of zearalenone (ZON) and its metabolite, α-zearalenol (α-ZOL), in neoplastically changed human tissue by accelerated solvent and ultrasonic extractions using a mixture of acetonitrile/water (84/16% v/v) as the extraction solvent. Extraction effectiveness was determined through the selection of parameters (composition of the solvent mixture, temperature, pressure, number of cycles) with tissue contamination at the level of nanograms per gram. The produced acetonitrile/water extracts were purified, and analytes were enriched in columns packed with homemade molecularly imprinted polymers. Purified extracts were determined by liquid chromatography (LC) coupled with different detection systems (diode array detection - DAD and mass spectrometry - MS) involving the Ascentis RP-Amide as a stationary phase and gradient elution. The combination of UE-MISPE-LC (ultrasonic extraction - molecularly imprinted solid-phase extraction - liquid chromatography) produced high (R ≈ 95–98%) and repeatable (RSD < 3%) recovery values for ZON and α-ZOL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号