首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Asbury GR  Klasmeier J  Hill HH 《Talanta》2000,50(6):738-1298
The analysis of explosives with ion mobility spectrometry (IMS) directly from aqueous solutions was shown for the first time using an electrospray ionization technique. The IMS was operated in the negative mode at 250°C and coupled with a quadrupole mass spectrometer to identify the observed IMS peaks. The IMS response characteristics of trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 4-nitrotoluene (4-NT), trinitrobenzene (TNB), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), cyclo-tetramethylene-tetranitramine (HMX), dinitro-ethyleneglycol (EGDN) and nitroglycerine (NG) were investigated. Several breakdown products, predominantly NO2 and NO3, were observed in the low-mass region. Nevertheless, all compounds with the exception of NG produced at least one ion related to the intact molecule and could therefore be selectively detected. For RDX and HMX the [M+Cl] cluster ion was the main peak and the signal intensities could be greatly enhanced by the addition of small amounts of sodium chloride to the sprayed solutions. The reduced mobility constants (K0) were in good agreement with literature data obtained from experiments where the explosives were introduced into the IMS from the vapor phase. The detection limits were in the range of 15–190 μg l−1 and all calibration curves showed good linearity. A mixture of TNT, RDX and HMX was used to demonstrate the high separation potential of the IMS system. Baseline separation of the three compounds was attained within a total analysis time of 6.4 s.  相似文献   

2.
In recent years, the resolving power of ion mobility instruments has been increased significantly, enabling ion mobility spectrometry (IMS) to be utilized as an analytical separation technique for complex mixtures. In theory, decreasing the drift tube temperature results in increased resolution due to decreased ion diffusion. However, the heat requirements for complete ion desolvation with electrospray ionization (ESI) have limited the reduction of temperatures in atmospheric pressure ion mobility instruments. Micro-electrospray conditions were investigated in this study to enable more efficient droplet formation and ionization with the objective of reducing drift tube temperatures and increasing IMS resolution. For small molecules (peptides), the drift tube temperature was reduced to ambient temperature with good resolution by employing reduced capillary diameters and flow rates. By employing micro-spray conditions, experimental resolution values approaching theoretically predicted resolution were achieved over a wide temperature range (30 to 250 °C). The historical heat requirements of atmospheric pressure IMS due to ESI desolvation were eliminated due to the use of micro-spray conditions and the high-resolution IMS spectra of GLY-HIS-LYS was obtained at ambient temperature. The desolvation of proteins (cytochrome c) was found to achieve optimal resolution at temperatures greater than 125 °C. This is significantly improved from earlier IMS studies that required drift tube temperatures of 250°C for protein desolvation.  相似文献   

3.
A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3, NO3, NO2, O3 and O2 of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and amines were selected to evaluate the new ionization source. The source was operated continuously for 3 months and although surface deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions.  相似文献   

4.
Ion mobility spectrometry (IMS) and IMS/MS techniques were used to differentiate between nitrogenprotonated and carbon-protonated anilines, both of which coexist under the conditions of the IMS. Analysis of the results led to the conclusion that the former species had lower mobilities than the latter. This was attributed mainly to charge delocalization in the ring-protonated species, which results in a weaker interaction with the drift gas molecules. Furthermore,meta-alkyl substitution enhanced ring protonation, while in 2-chloroaniline the nitrogenprotonated species was predominant, as expected.  相似文献   

5.
Due to the proteomics revolution, multi-dimensional separation and detection instruments are required to evaluate many peptides and proteins in single samples. In this study, electrospray ionization (ESI) ion mobility spectrometry (IMS) was evaluated as an additional separation after HPLC separations. Common HPLC mobile phase compositions (solvents, acid modifiers, and buffers) were assessed for the effect on ESI-IMS response. Up to 5 mM sodium phosphate, a non-volatile buffer, was able to be electrosprayed into the IMS without degradation of the instrumental performance. Due to the rapid separation times of IMS, multiple IMS spectra were obtained within a single HPLC peak. A five-peptide mixture was separated in a capillary HPLC column under isocratic conditions within 3 min. Coelution of two peaks due to non-optimal HPLC conditions occurred and these two peaks could not be distinguished by HPLC with UV detection. In contrast, the single ion mobility chromatograms provided separation of each peptide as well as providing a second degree of analyte identification (HPLC retention time and IMS mobility). Furthermore, IMS-MS analysis of the five peptides and comparison with HPLC retention times showed that each peptide had a unique retention time-ion mobility-mass to charge value. This work showed that IMS could be employed for direct separation and detection of HPLC eluents and also could be combined with HPLC-MS for three unique dimensions of separation.  相似文献   

6.
A combination of electrospray ionization, high-field asymmetric waveform ion mobility spectrometry, and mass spectrometry (ESI-FAIMS/MS) was used to analyze standard solutions of microcystins-LR, -RR, and -YR. The ability of FAIMS to separate ions in the gas phase reduced the amount of background in the mass spectrum without compromising the absolute signal for these microcystins. This reduction in background resulted in a ten-fold improvement in the signal-to-background ratio over conventional ESI-MS. Detection limits, using direct infusion, were determined to be 4, 2, and 1 nM for microcystins-LR, -RR, and -YR, respectively.  相似文献   

7.
The applications of ion mobility spectrometry (IMS) have grown exponentially beyond its uses for explosive, illicit drug and chemical warfare agent monitoring in recent years. Instrumental developments including new drift tube materials and ionization sources have enabled the manufacturing of more sophisticated and affordable IMS equipment for the advantageous analysis of samples with no pretreatment. The most recent applications of IMS include quality control and cleaning validation procedures in the pharmaceutical industry; determinations of contaminants in food samples; clinical analyses of biological fluids; environmental analyses of contaminants in gaseous, liquid and solid samples; and (bio)process quality control monitoring. Coupling IMS with MSn has enabled the analysis of very complex samples and the extraction of knowledge unavailable from isolated MS measurements, especially in the polymer and petroleomic industries.  相似文献   

8.
Current commercially available ion mobility spectrometers are intended for the analysis of chemicals in the gas phase. Sample introduction methods, such as direct air sampling, a GC injector or a thermal desorber, are commonly an integral part of these instruments. This paper describes an electrospray ionization ion mobility spectrometer system that allows direct introduction samples in solution phase. This allows direct analysis of non-volatile organic and biological samples, and avoids decomposition of thermally liable samples, providing reliable chemical identification. In addition, the new ion mobility spectrometer allows mobility analysis with high resolving power. Commonly used commercial IMS systems provide resolving powers between 10 and 30; this new ion mobility spectrometer has resolving power greater than 60 for routine analysis. A high resolution instrument is necessary for many applications where a complex mixture needs to be separated and quantified. This paper demonstrates the advantages of using a high resolution ion mobility spectrometer and an electrospray ionization source for the analysis of non-volatile pharmaceuticals as well as dissolved explosive in solution phase.  相似文献   

9.
The pressure dependence of sheath gas assisted electrospray ionization (ESI) was investigated based on two complementary experimental setups, namely an ESI-ion mobility (IM) spectrometer and an ESI capillary - Faraday plate setup housed in an optically accessible vacuum chamber. The ESI-IM spectrometer is capable of working in the pressure range between 300 and 1000 mbar. Another aim was the assessment of the analytical capabilities of a subambient pressure ESI-IM spectrometer. The pressure dependence of ESI was characterized by imaging the electrospray and recording current-voltage (I-U) curves. Qualitatively different behavior was observed in both setups. While the current rises continuously with the voltage in the capillary-plate setup, a sharp increase of the current was measured in the IM spectrometer above a pressure-dependent threshold voltage. The different character can be attributed to the detection of different species in both experiments. In the capillary-plate experiment, a multitude of charged species are detected while only desolvated ions attribute to the IM spectrometer signal. This finding demonstrates the utility of IM spectrometry for the characterization of ESI, since in contrast to the capillary-plate setup, the release of ions from the electrospray droplets can be observed. The I-U curves change significantly with pressure. An important result is the reduction of the maximum current with decreasing pressure. The connected loss of ionization efficiency can be compensated by a more efficient transfer of ions in the IM spectrometer at increased E/N. Thus, similar limits of detection could be obtained at 500 mbar and 1 bar.  相似文献   

10.
Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.  相似文献   

11.
Carbohydrates are an extremely complex group of isomeric molecules that have been difficult to analyze in the gas phase by mass spectrometry because (1) precursor ions and product ions to successive stages of MS(n) are frequently mixtures of isomers, and (2) detailed information about the anomeric configuration and location of specific stereochemical variants of monosaccharides within larger molecules has not been possible to obtain in a general way. Herein, it is demonstrated that gas-phase analyses by direct combination of electrospray ionization, ambient pressure ion mobility spectrometry, and time-of-flight mass spectrometry (ESI-APIMS-TOFMS) provides sufficient resolution to separate different anomeric methyl glycosides and to separate different stereoisomeric methyl glycosides having the same anomeric configuration. Reducing sugars were typically resolved into more than one peak, which might represent separation of cyclic species having different anomeric configurations and/or ring forms. The extent of separation, both with methyl glycosides and reducing sugars, was significantly affected by the nature of the drift gas and by the nature of an adducting metal ion or ion complex. The study demonstrated that ESI-APIMS-TOFMS is a rapid and effective analytical technique for the separation of isomeric methyl glycosides and simple sugars, and can be used to differentiate glycosides having different anomeric configurations.  相似文献   

12.
The coupling of ion mobility spectrometry (IMS) instruments with mass spectrometers has been described since early in IMS development, most commonly with quadrupole mass analyzers. The recent development of IMS with time-of-flight (TOF) instruments has demonstrated that the time compatibility (IMS milliseconds and TOFMS microseconds) of the two techniques enables rapid two-dimensional separations to be performed, theoretically in the order of seconds for a complete analysis. This study presents a unique way to operate a traditional IMS/QMS system to attain separations similar to those achieved with IMS/TOF. For this new approach, the quadrupole was slowly scanned in the single-ion monitoring mode while IMS spectra were continually embedded in each m/z step. In this way, two-dimensional separations (IMS drift times and m/z) were obtained using the traditional IMS/QMS arrangement. An example of a five amino acid separation (quadrupole scan of 40 m/z values at a rate of approximately 7 steps/min) led to a complete two-dimensional analysis within 6 min, comparable to rapid chromatographic separations with mass spectrometry. Proposed approaches to reduce the analysis time are discussed and a reduction in the analysis time to less than 1 min is feasible when the IMS/QMS separation conditions are optimized.  相似文献   

13.
Triazines comprise an important pollutant class owing to continued use in certain countries, and owing to strong environmental persistence that leads to problems even in countries like Sweden where the use of triazines has been prohibited for some years. We investigated mass-selective detection for analysis of triazines. More specifically, we studied the background reduction and sensitivity enhancement that result from the use of a new interface technique, field-asymmetric ion mobility spectrometry (FAIMS), in conjunction with electrospray ionization ion-trap mass spectrometry. This technique allows for ion sorting and discrimination against the considerable "chemical noise", nonspecific cluster and fragment ions, which are typically generated in electrospray ionization. This paper presents results of a pilot study of triazines and some metabolites in ideal solvents. Our long-range goal is automated analysis with mass-selective detection coupled to membrane-based sample cleanup and enrichment for additional enhancement in sensitivity.  相似文献   

14.
We present the results of studying the effects of temperature and humidity of the reaction medium and the intensity of ultraviolet radiation on the atmospheric pressure chemical ionization of Penthrite. The peculiarities of the ion mobility spectra of this compound obtained by ion mobility spectrometry-tandem mass spectrometry are analyzed.  相似文献   

15.
16.
Chemical standards for positive ion mode electrospray ionization ion mobility spectrometry/mass spectrometry (ESI(+)-IMS/MS) are suggested. The low clustering tendency of tetraalkylammonium halides makes them ideal chemical standards for ESI(+)-IMS/MS. A homologous series of these compounds forms a useful external standard for instrument testing and resolution calibration of an IMS instrument. Selected homologues or a mixture of tetraalkylammonium halides can be used as mobility standards in the analytical runs. Absolute and relative reduced mobilities were calculated for C2--C8, C10 and C12 tetraalkylammonium halides. Absolute reduced mobilities in nitrogen were 1.88, 1.56, 1.33, 1.15, 1.02, 0.92, 0.84, 0.73, and 0.67 cm2 V(-1) s(-1), for C2--C8, C10 and C12 tetraalkylammonium halides, respectively. Relative reduced mobilities (relative to 2,6-di-tert-butylpyridine) for the same compounds were 1.20, 1.00, 0.855, 0.743, 0.658, 0.59, 0.54, 0.47, and 0.43, respectively.  相似文献   

17.
The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization.  相似文献   

18.
Mass spectrometry (MS) and ion mobility with electrospray ionization (ESI) have the capability to measure and detect large noncovalent protein-ligand and protein-protein complexes. Using an ion mobility method of gas-phase electrophoretic mobility molecular analysis (GEMMA), protein particles representing a range of sizes can be separated by their electrophoretic mobility in air. Highly charged particles produced from a protein complex solution using electrospray can be manipulated to produce singly charged ions, which can be separated and quantified by their electrophoretic mobility. Results from ESI-GEMMA analysis from our laboratory and others were compared with other experimental and theoretically determined parameters, such as molecular mass and cryoelectron microscopy and X-ray crystal structure dimensions. There is a strong correlation between the electrophoretic mobility diameter determined from GEMMA analysis and the molecular mass for protein complexes up to 12 MDa, including the 93 kDa enolase dimer, the 480 kDa ferritin 24-mer complex, the 4.6 MDa cowpea chlorotic mottle virus (CCMV), and the 9 MDa MVP-vault assembly. ESI-GEMMA is used to differentiate a number of similarly sized vault complexes that are composed of different N-terminal protein tags on the MVP subunit. The average effective density of the proteins and protein complexes studied was 0.6 g/cm(3). Moreover, there is evidence that proteins and protein complexes collapse or become more compact in the gas phase in the absence of water.  相似文献   

19.
Mass spectrometry and gas phase ion mobility [gas phase electrophoretic macromolecule analyzer (GEMMA)] with electrospray ionization were used to characterize the structure of the noncovalent 28-subunit 20S proteasome from Methanosarcina thermophila and rabbit. ESI-MS measurements with a quadrupole time-of-flight analyzer of the 192 kDa alpha7-ring and the intact 690 kDa alpha7beta7beta7alpha7 are consistent with their expected stoichiometries. Collisionally activated dissociation of the 20S gas phase complex yields loss of individual alpha-subunits only, and it is generally consistent with the known alpha7beta7beta7alpha7 architecture. The analysis of the binding of a reversible inhibitor to the 20S proteasome shows the expected stoichiometry of one inhibitor for each beta-subunit. Ion mobility measurements of the alpha7-ring and the alpha7beta7beta7alpha7 complex yield electrophoretic diameters of 10.9 and 15.1 nm, respectively; these dimensions are similar to those measured by crystallographic methods. Sequestration of multiple apo-myoglobin substrates by a lactacystin-inhibited 20S proteasome is demonstrated by GEMMA experiments. This study suggests that many elements of the gas phase structure of large protein complexes are preserved upon desolvation, and that methods such as mass spectrometry and ion mobility analysis can reveal structural details of the solution protein complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号