首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The effect of severe plastic deformation by torsion under Bridgman anvil pressure (SPDT) on the electrical, magnetic, and optical properties of the Cu60Pd40 alloy was studied. It is shown that, after the alloy is disordered, the Curie-Weiss constants of the paramagnetic component are changed insignificantly. In this case, the temperature-independent negative component of the magnetic susceptibility decreases more than fivefold. The electrical resistance and negative thermopower, on the contrary, increase severalfold as a result of SPDT. The character of the optical conductivity is discussed using the band structure calculation results.  相似文献   

2.
The conditions of synthesizing a new Ag6SnS4Br2 compound were studied. The crystallographic parameters of the unit cell were determined as follows: space group Pnma, a=6.67050(10) Å, b=7.82095(9) Å, c=23.1404(3) Å, and Z=4. The total electrical conductivity and its ionic component were measured by a dc probe method in the temperature range 210–380 K. Kinks in the conductivity curve and the differential thermogram of heating the alloy were revealed at 235 K. It was concluded that the mass and charge transfers in the compacted Ag6SnS4Br2 alloy powder have an intragrain character.  相似文献   

3.
We have analyzed the electrical and optical properties of Cu2ZnSnS4, Cu2FeSnS4, and Cu2MnSnS4 films with the p-type electrical conductivity, which were prepared by spray pyrolysis at temperature TS = 290°C using 0.1 M aqueous solutions of salts CuCl2 · 2H2O, ZnCl2 · 2H2O, MnCl2 · 2H2O, FeCl3 · 6H2O, SnCl4 · 5H2O, and (NH2)CS. The energy parameters have been determined from analyzing the electrophysical properties of the films using the model of energy barriers at grain boundaries in polycrystalline materials, and the thickness of intercrystallite boundaries has been estimated. The extent of the influence of the hole concentration p0 in the bulk of crystallites and height E b of the energy barriers between grains on the electrical conductivity has been determined. The optical bandgap width for thin Cu2Zn(Fe,Mn)SnS4 films has been calculated based on analyzing the spectral dependences of the absorption coefficient.  相似文献   

4.
The structure of the Fe73.5Si13.5B9Nb3Cu1 soft magnetic alloy has been investigated using X-ray diffraction in transmission geometry. The initial alloy prepared by rapid quenching from the melt has a short-range order (∼2 nm) in the atomic arrangement, which is characteristic of the Fe-Si structure with a body-centered cubic lattice. The alloy subjected to annealing contains Fe-Si nanocrystals with sizes as large as 10–12 nm. The annealing under a tensile load leads to an extension of the nanocrystal lattice so that, after cooling, a significant residual deformation is retained. This can be judged from the relative shifts of the (hkl) peaks in the X-ray diffraction patterns measured for two orientations of the scattering vector, namely, parallel and perpendicular to the direction of the load applied. The deformation is anisotropic: within the accuracy of the experiment, no distortions in the [111] direction are observed and the distortions in the [100] direction are maximum. It is known that crystals with a composition close to Fe3Si exhibit a negative magnetostriction; i.e., their magnetization induced under a load (Villari effect) applied along the [100] direction is perpendicular to this direction along one of the easy magnetization ([010] or [001]) axes. In the alloy, the orientation of the nanocrystal axes is isotropic and the majority of the nanocrystals have a composition close to Fe3Si. The direction of magnetization of these nanocrystals is determined by the residual deformation of their lattice and lies near the plane perpendicular to the direction of the tensile load applied during heat treatment. This is responsible for the appearance of transverse magnetic anisotropy of the easy-plane type in the Fe73.5Si13.5B9Nb3Cu1 alloy.  相似文献   

5.
The effect of ultrarapid quenching from the melt and severe plastic torsional deformation under high pressure on the crystalline structure and the electrical, optical, and magnetic properties of a Ni2.16Mn0.84Ga alloy was studied. The electrical properties are discussed in terms of the Mott two-band model. The peculiarities of the magnetic properties are associated with the magnetism of itinerant electrons. The optical properties correlate with the variations in the electronic spectrum upon disordering of the alloy that follow from the results of the available energy-band-structure calculations.  相似文献   

6.
The effect of severe plastic deformation by torsion (SPDT) in Bridgman anvils at a high pressure (6 GPa) on the physical properties and crystal structure of the shape memory alloy Ti49.5Ni50.5 has been studied. The behavior of the thermal expansion, electrical resistivity, absolute differential thermopower, Hall coefficient, magnetic properties, and optical characteristics of the amorphous/nanocrystalline and submicrocrystalline alloys obtained by the SPDT with subsequent heat treatment at 800 K has been discussed.  相似文献   

7.
The effect of atomic disordering on the magnetic, electrical, and optical properties of the Pt74.1Fe25.9alloy close in composition to the stoichiometric Pt3Fe alloy has been studied. It has been shown that, as a result of severe plastic torsional deformation under high pressure, the alloy transforms from the antiferromagnetic state (T N=164 K) into the ferromagnetic state (T C≈400 K). In this case, the residual electrical resistivity increases by a factor of more than two and the thermopower changes its sign from positive to negative. The results of the studies of the optical conductivity agree with the previously calculated electronic spectra of the atomically ordered and disordered Pt3Fe alloys in the range of interband transitions and with the obtained data on the electrical properties in the infrared range.  相似文献   

8.
The equilibrium and photoinduced absorption spectra of copper-and silver-doped Bi12SiO20 crystals are studied. It is demonstrated that the impurity absorption is due to Ag2+, Ag+, Cu3+, Cu2+, and Cu+ ions occupying almost octahedral Bi3 positions. A mechanism of photochromism is suggested, involving changes in the charge states of copper and silver impurity ions according to schemes Cu2+-e → Cu3+ and Ag+-e → Ag2+.  相似文献   

9.
Field investigations were performed into the nature of oxidation of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy (Vitreloy-1), a new alloy highly promising for in -vessel mirrors of the ITER (International Thermonuclear Experimental Reactor). The main methods of investigation were X-ray photoelectron spectroscopy and multi-angle ellipsometry. The resistance of the optical properties of Vitreloy-1 against radiation impact was explained by the oxidation of the surface layer, based on the features of the diffusion process in amorphous alloys and of interaction between amorphous metal alloys with hydrogen.  相似文献   

10.
The cationic conductivities of Cu2Se and Ag2Se superionic conductor solid solutions in the composition region from Cu2Se to Cu0.7Ag1.3Se are measured. It is demonstrated that the activation energy of ionic conduction depends only slightly on the chemical composition, varies from 0.14 to 0.17 eV, and exhibits a weakly pronounced maximum for the Ag0.44Cu1.56Se solid solution. The ionic Seebeck coefficients are measured for the Ag0.23Cu1.757Se solid solution. The heat of cation transfer in this solution is found to be equal to 0.144±0.014 eV from the Seebeck coefficients.  相似文献   

11.
Depth-sensing (indentation) testing is used to study the characteristics of a serrated plastic flow in a Pd40Cu30Ni10P20 bulk amorphous alloy, and the boundaries between the regions of serrated and homogeneous plastic deformation are determined.  相似文献   

12.
The effect of multiple rolling at room temperature on the structure and crystallization of the Al85Ni6.1Co2Gd6Si0.9 amorphous alloy has been studied using transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction. The total plastic strain is 33%. It has been shown that the deformation results in the formation of aluminum nanocrystals with the average size that does not exceed 10–15 nm. The nanocrystals are formed in regions of localization of plastic deformation. The deformation decreases the thermal effect of nanocrystallization (∼15%) as compared to the heat release at the first stage of crystallization of the unstrained sample. The morphology, structure, and distribution of precipitates have been investigated. Possible mechanisms of the formation of nanocrystals during the deformation have been discussed.  相似文献   

13.
Li2Mn4O9 and molybdenum-doped Li2Mn4O9 have been prepared by simple solid-state method. Molybdenum is used as a dopant since it is resistant to both corrosion and high-temperature creep deformation. The structural, morphological, and electrical performances of the samples have been analyzed. The material exhibits a cubic structure with the fd3m space group. Using EDAX, the chemical compositions of the samples have been identified. The dc electrical conductivity of the Mo-doped (LM2) sample is found to be increased to 7.44?×?10?6 S cm?1 at 393 K. The enhanced electrical property of the molybdenum-doped Li2Mn4O9 reveals it as a feasible cathode material for rechargeable Li-ion batteries.  相似文献   

14.
A new perovskite-like compound Er0.73Cu3V4O12 (space group Im \(\bar 3\), Z = 2, a = 7.266 Å) has been synthesized barothermally (P = 8.0 GPa, t = 1000°C). Its electrical and magnetic properties have been studied. It is found that the temperature dependence of the electrical conductivity (in the range 78–300 K) has of semiconductor type. The behavior of the impedance and admittance has been analyzed at 290 K and frequencies of 200 Hz to 200 kHz under atmospheric pressure and at high (15–42 GPa) pressures.  相似文献   

15.
The effect of atomic disordering and alloying with d elements (Fe, Pd, Cu) on the transport and magnetic properties of Cu3Pd alloys has been investigated at low temperatures (T < 80 K) in strong magnetic fields (H ≤ 8 MA/m). The specific features of the crystal structure and temperature and field dependences of the electrical resistance, magnetoresistance, Hall effect, and magnetic susceptibility of Cu72Pd28, Cu75Pd25, Cu80Pd20 and Cu74.5Pd24.5Fe1 alloys are discussed.  相似文献   

16.
A Cu2+-doped single crystal of catena-trans-bis(N-(2-hydroxyethyl)-ethylenediamine) zinc(II)-tetra-m-cyanopaladate(II) [ZnPd(CN)4(C4H12N2O2)] complex has been investigated by electron paramagnetic resonance (EPR) technique at room temperature. EPR spectra indicate that Cu2+ ions substitute for magnetically equivalent Zn2+ ions and form octahedral complexes in [ZnPd(CN)4(C4H12N2O2)] hosts. The crystal field affecting the Cu2+ ion is nearly axial. The optical absorption studies show two bands at 322 nm (30864 cm−1) and 634 nm (15337 cm−1) which confirm the axial symmetry. The spin Hamiltonian parameters and the relevant wave function are determined.  相似文献   

17.
Comparative studies of physical characteristics (the electrical resistivity, the magnetic susceptibility, the magnetization, the bending deformation, and the degree of shape recovery during subsequent heating) of the Ni54Mn21Ga25 ferromagnetic alloy as-cast and rapidly quenched from melt have been performed in the temperature range 2–400 K. The results are compared to the results of studying the structural–phase transformations by transmission and scanning electron microscopy and X-ray diffraction. It is found that the rapid quenching influences the microstructure, the magnetic state, the critical temperatures, and the specific features of thermoelastic martensite transformations in the alloy. It is found that the resource of the alloy plasticity and thermomechanical bending cyclic stability demonstrates a record-breaking increase in the intercritical temperature range and during subsequent heating.  相似文献   

18.
The temperature dependences of the magnetic properties and the magnetoimpedance effect of soft magnetic nanocrystalline Fe73.5Si16.5B6Nb3Cu1 alloy ribbons are studied in the temperature range 24–160°C. A high temperature sensitivity of the impedance and the magnetoimpedance effect of the ribbons are detected in the ac frequency range 0.1–50 MHz. At an ac frequency of 50 MHz, the change in the impedance reaches 0.2 Ω/°C (0.5%/°C) in the temperature range 85–160°C. When the temperature increases, a monotonically decreasing character of the dependence of the magnetoimpedance effect on the applied magnetic field changes into a dependence having an increasing initial segment. The effect of temperature on the magnetoimpedance properties of the soft magnetic nanocrystalline ribbons is shown to result from temperature-induced changes in their electrical conductivity, magnetization, and effective magnetic anisotropy.  相似文献   

19.
The possible formation of a nanocrystalline structure in controlled crystallization of a bulk Zr50Ti16Cu15Ni19 amorphous alloy has been studied using differential scanning calorimetry, transmission and high-resolution electron microscopy, and x-ray diffraction. It was established that crystallization of the alloy at temperatures above the glass formation point occurs in two stages and brings about the formation of a nanocrystalline structure consisting of three phases. Local spectral x-ray analysis identified the composition and structure of the phases formed.  相似文献   

20.
The influence of plastic deformation on the structure of the Pd40Ni40P20 amorphous alloy has been investigated using X-ray diffraction and measurements of the velocity of sound. It has been revealed that the rolling of the sample leads to a change in the structure of the amorphous phase (distortion of the first coordination sphere) and that the structural transformations are more pronounced in the near-surface region of the sample. The rolling also results in a decrease in the transverse velocity of sound. The observed effects decrease with time. It has been demonstrated that the revealed effects are associated with the inelastic deformation of the amorphous alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号