首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A confirmatory and quantitative method based on liquid chromatography–electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS) has been developed for simultaneous determination of seven photoinitiator residues: benzophenone, (1-hydroxycyclohexyl)phenylketone (Irgacure 184), isopropylthioxanthone (ITX), 2-ethylhexyl-(4-dimethylamino)benzoate (EHA or EHDAB), 2-methyl-1-[4-(methylthio)phenyl]-2-(4-morpholinyl)-1-propanone (Irgacure 907), (2,4,6-trimethylbenzoyl)diphenylphosphine oxide (TPO) and 2-benzyl-2-(dimethylamino)-1-(4-morpholinophenyl)-1-butanone (Irgacure 369) in packaged milk and related packaging materials. Residues of photoinitiators were extracted from milk using acetonitrile, and further enriched and purified on HLB solid-phase extraction cartridges prior to being analyzed by LC-ESI/MS/MS with selected reaction monitoring mode, while photoinitiators in packaging materials were extracted using the same solvent. Satisfactory recovery (from 80 to 111%), intra- and inter-day precision (below 12%), and low limits of quantification (from 0.1 to 5.0 μg kg−1) were evaluated from spiked samples at three concentration levels (5.0, 10.0 and 25.0 μg kg−1 for Irgacure 184 and 2.5, 5.0 and 25.0 μg kg−1 for others). These excellent validation data suggested the possibility of using the LC-ESI/MS/MS method for simultaneous determination of low-level photoinitiator residues migrating from printed food-packaging materials into milk. The method has been successfully applied to the analysis of real samples of different fat contents ranging from 8 to 30 g L−1. The photoinitiator residues were revealed to be higher in milk with higher fat content and the most important contaminations were benzophenone and ITX in concentration ranges of 2.84–18.35 and 0.83–8.87 μg kg−1, respectively.  相似文献   

2.
A liquid chromatographic atmospheric-pressure ionization electrospray mass spectrometry (LC–API–ES–MS) method has been developed for the determination of five bitter orange alkaloids (synephrine, octopamine, n-methyltyramine, tyramine, and hordenine) in bitter orange-containing dietary supplement standard reference materials (SRMs). The materials represent a variety of natural, extracted, and processed sample matrices. Two extraction techniques were evaluated: pressurized-fluid extraction (PFE) and sonication extraction. The influence of different solvents, extraction temperatures, and pH were investigated for a plant material and a processed sample. The LC method uses a new approach for the separation of highly polar alkaloids. A fluorinated, silica-based stationary phase separated the five alkaloids and the internal standard terbutaline in less than 20 min. This method enabled the determination of the dominant alkaloid synephrine and other minor alkaloids in a variety of dietary supplement SRMs.  相似文献   

3.
Evodiamine and rutecarpine are two kinds of indole alkaloids contained in the fruit of Evodiae fructus, which have been shown to exhibit various bioactivities in humans. A liquid chromatography–tandem mass spectrometric method (LC–MS/MS) was developed for the determination of evodiamine and rutecarpine in human serum. The serum was extracted by solid-phase extraction (SPE) and analyzed using a C18 column and a mobile phase consisting of methanol–water (85:15) solution containing 5 mmol/L ammonium formate at a flow rate of 0.5 mL/min. The mass spectrometer was operated in positive mode, employing the extracted ion chromatogram (EIC) for detection and quantitation of evodiamine (m/z 288) and rutecarpine (m/z 304). Good linear relationships between the peak area and the concentration were obtained in the ranges of 5.2–1040 ng/mL and 10.2–1020 ng/mL, with correlation coefficients (r) of 0.999 and 0.998, for evodiamine and rutecarpine, respectively. The repeatabilities (RSD, n=6) of quantitation for evodiamine and rutecarpine were 2.18–4.00% and 2.99–5.67%, respectively, and the recovery ranged from 90.5% to 98.1%. A comparative study of the different ionization and quantitation modes, including ESI–MS, ESI–MS/MS, APCI–MS and APCI–MS/MS, was also accomplished. The MS/MS fragmentation mechanism of the base peak ([M+H]+, m/z 304) of evodiamine was investigated in order to identify the analytes in more complicated body fluid samples.   相似文献   

4.
Organic colorants contained in 30 textiles (16th to early 20th century) from the monastery of Simonos Petra (Mount Athos) have been investigated using high-performance liquid chromatography equipped with diode-array detection and mass spectrometry (HPLC–DAD–MS). The components of natural dyes identified in samples treated by the standard HCl dyestuff extraction method were: alizarin, apigenin, butein, carminic acid, chrysoeriol, dcII, dcIV, dcVII, ellagic acid, emodin, fisetin, flavokermesic acid, fustin, genistein, haematein derivative (Hae′), indigotin, indirubin, isoliquiritigenin, isorhamnetin, kaempferide, kaempferol, kermesic acid, luteolin, naringenin, purpurin, quercetin, rhamnazin, rhamnetin, sulfuretin, and type B and type C compounds (last two are markers for Caesalpinia trees). Early, semi-synthetic dyes, for example indigo carmine, fuchsin components, and rhodamine B were identified in objects dated late 19th to early 20th century. A dyestuff extraction method which involves use of TFA, instead of HCl, was applied to selected historical samples, showing that the mild method enables efficient extraction of weld (Reseda luteola L.) and dyer’s broom (Genista tinctoria L.) glycosides. The marker compound (Hae′) for logwood (Haematoxylum campechianum L.) identification after treatment with HCl was investigated by liquid chromatography coupled to mass spectrometry (LC–MS) in negative electrospray ionization (LC–MS-ESI) mode. LC–MS in negative atmospheric pressure chemical ionization (LC–MS-APCI) mode was used, probably for the first time, to investigate cochineal (Dactylopius coccus Costa) samples. Positive electrospray ionization (LC–MS-ESI+) mode was used for identification of fuchsin components. Detailed HPLC–DAD studies were performed on young fustic (Cotinus coggygria Scop.) and Persian berries (Rhamnus trees).  相似文献   

5.
Without any sample pretreatment, effervescent beverage fluids were manually sprayed into the primary ion plume created by using a nanoelectrospray ionization source for direct ionization, and the analyte ions of interest were guided into an ion trap mass spectrometer for tandem mass analysis. Functional ingredients (e.g., vitamins, taurine, and caffeine, etc.) and spiked impurity (e.g., cocaine) in various beverages, such as Red Bull energy drink, Coco-cola, and Pepsi samples were rapidly identified within 1.5 s. The limit of detection was found to be 7 ∼ 15 fg (S/N = 3) for cocaine in different samples using the characteristic fragment (m/z 150) observed in the MS3 experiments. Typical relative standard deviation and recovery of this method were 6.9% ∼ 8.6% and 104% ∼ 108% for direct analysis of three actual samples, showing that nanoextractive electrospray ionization tandem mass spectrometry is a useful technique for fast screening cocaine presence in beverages.  相似文献   

6.
A comprehensive method was developed for the simultaneous trace analysis of ten hormone antagonist pharmaceuticals (raloxifene, exemestane, letrozole, anastrozole, mifepristone, finastride, tamoxifen, N-desmethyltamoxifen, clomiphene, and toremifene) in municipal sewage and hospital wastewater samples. The target compounds were firstly extracted using an Oasis HLB cartridge, followed by purification by an aminopropyl cartridge, and were then analyzed by liquid chromatography electrospray ionization tandem mass spectrometry in positive ion mode. The recoveries for the analytes based on internal standard calibration in different test matrices ranged from 67.6 to 118.6% (with the exception of mifepristone in clinical wastewater samples), with relative standard deviations less than 20%. The method quantification limits of the ten pharmaceuticals were in the range 0.10–2.0 ng/L. Excluding exemestane and N-desmethyltamoxifen, eight drugs were detected at 0.20–195.0 ng/L in hospital wastewater and municipal wastewater samples from Beijing.  相似文献   

7.
The on-line combination of partial-filling capillary electrophoresis and electrospray ionization mass spectrometry was demonstrated for the enantioseparation of pharmaceutical drugs and metabolites, namely amphetamines, methadone, venlafaxine and selected tropane alkaloids. The partial-filling technique proved to be a suitable and efficient approach to avoid mass spectrometry (MS) source contamination, as well as signal suppression due to nonvolatile additives. To achieve chiral separation, various chiral selectors were applied, including neutral and particularly negatively charged cyclodextrins. Because of the countercurrent contribution, charged cyclodextrins were found more suitable for the on-line MS detection of separated enantiomers. Hyphenation of capillary electrophoresis (CE) with mass spectrometry was found appropriate for the stereoselective analysis of methadone in real serum samples. Moreover, the use of MS in the selected ion monitoring mode resulted in a very high selectivity, as well as improved sensitivity compared to UV detection. Finally, with atropine as a model compound, the quantitative performances of the method were evaluated and showed high sensitivity, as well as good repeatability in terms of migration time and peak area ratio.  相似文献   

8.
The chemical composition of herbal medicines is very complex, and their therapeutic effects are determined by multi-components with sophisticated synergistic and/or suppressive actions. Therefore, quality control of herbal medicines has been a formidable challenge. In this work, we describe a fast analytical method that can be used for quality assessment of herbal medicines. The method is based on ligand fishing using human-serum-albumin-functionalized magnetic nanoparticles (HSA-MNPs) and mass spectrometry. To demonstrate the applicability of the proposed method, eight samples of Dioscorea panthaica were analyzed. The sampled plants were of both wild and cultivated origins. They grew at different geographical locations and were harvested at different times. The ligands bound to HSA-MNPs were isolated from the plant extracts and detected by using direct infusion electrospray ionization mass spectrometry (DI–ESI–MS). Chemical identity has been confirmed for five of the ligands isolated. From more than 15 peaks in the ESI–MS spectrum, 11 common peaks were selected for calculating the correlation coefficient and cosine ratio. The values of correlation coefficient and cosine ratio were >0.9824 and >0.9988, respectively, for all the samples tested. The results indicated a high level of similarity among the eight D. panthaica samples. Compared with chromatographic fingerprint analysis, the proposed HSA-MNP-based DI–ESI–MS/MS approach was not only fast and easy to carry out but also biological-activity-oriented, promising a more effective data interpretation and thus reliable assessment conclusions.  相似文献   

9.
Glutathione peroxidase (isolated from bovine erythrocytes) and its behaviour during alkylation and enzymatic digestion were studied by various hyphenated techniques: gel electrophoresis–laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS), size-exclusion liquid chromatography–ICP MS, capillary high-performance liquid chromatography (capHPLC)–ICP MS, matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) MS, electrospray MS, and nanoHPLC–electrospray ionization (ESI) MS/MS. ESI TOF MS and MALDI TOF MS allowed the determination of the molecular mass but could not confirm the presence of selenium in the protein. The purity of the protein with respect to selenium species could be evaluated by LA ICP MS and size-exclusion chromatography (SEC)–ICP MS under denaturating and nondenaturating conditions, respectively. SEC–ICP MS and capHPLC–ICP MS turned out to be valuable techniques to study the enzymolysis efficiency, miscleavage and artefact formation during derivatization and tryptic digestion. For the first time the parallel ICP MS and ESI MS/MS data are reported for the selenocysteine-containing peptide extracted from the gel; capHPLC–ICP MS allowed the sensitive detection of the selenopeptide regardless of the matrix and nanoHPLC–electrospray made possible its identification. Figure Eye catching image Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
A new set-up for microwave-assisted acid hydrolysis (MAAH) with high efficiency and reproducibility to degrade proteins into peptides for mass spectrometry analysis is described. It is based on the use of an inexpensive domestic microwave oven and can be used for low volume protein solution digestion. This set-up has been combined with liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI QTOF MS) for mapping protein sequences and characterizing phosphoproteins. It is demonstrated that for bovine serum albumin (BSA), with a molecular mass of about 67,000 Da, 1292 peptides (669 unique sequences) can be detected from a 2 μg hydrolysate generated by trifluoroacetic acid (TFA) MAAH. These peptides cover the entire protein sequence, allowing the identification of an amino acid substitution in a natural variant of BSA. It is shown that for a simple phosphoprotein containing one phosphoform, β-casein, direct analysis of the hydrolysate generates a comprehensive peptide map that can be used to identify all five known phosphorylation sites. For characterizing a complex phosphoprotein consisting of different phosphoforms with varying numbers of phosphate groups and/or phosphorylation sites, such as bovine αs1-casein, immobilized metal-ion affinity chromatography (IMAC) is used to enrich the phosphopeptides from the hydrolysate, followed by LC-ESI MS analysis. The MS/MS data generated from the initial hydrolysate and the phosphopeptide-enriched fraction, in combination with MS analysis of the intact protein sample, allow us to reveal the presence of three different phosphoforms of bovine αs1-casein and assign the phosphorylation sites to each phosphoform with high confidence.  相似文献   

11.
A high performance liquid chromatography coupled with evaporative light scattering detection (HPLC–ELSD) and electrospray ionization multistage mass spectrometry (HPLC–ESI–MSn), respectively, has been performed for the simultaneous determination of six steroidal alkaloids, including pseudojervine, veratrosine, jervine, veratramine, 3-veratroylzygadenine, 3-angeloylzygadenine, in Veratrum dahuricum collected in different seasons. The plants were soaked in methanol and extracted ultrasonically. The six steroidal alkaloids were obtained by silica gel column chromatography, eluting with gradient petroleum and acetyl acetate. The intra-day and inter-day precisions of the method were evaluated and were less than 1.4%. The content of steroidal alkaloids in the plant varied significantly from spring to autumn, confirming the necessity to control the quality of V. dahuricum during its preparation and application.  相似文献   

12.
《Analytical letters》2012,45(1):18-28
A simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous analysis of three tropane alkaloids in blood and urine. After 1 mL of a blood or urine sample was extracted using a liquid–liquid extraction method with ethyl acetate at pH 8 and homatropine as the internal standard, the tropane alkaloids were separated. An Allure PFP propyl column (50 mm × 2.1 mm, 5 µm) separated the tropane alkaloids using an acetonitrile-buffer solution (20 mmol/L ammonium acetate and 0.1% formic acid, pH 4) (70:30) as the mobile phase at a flow-rate of 0.2 mL/min in isocratic mode, with the LC-MS/MS in the positive ionization mode. For each compound, detection was related to two daughter ions (scopolamine: m/z 304.4 → 138.1 and 155.9; atropine: m/z 290.3 → 124.0 and 93.1; anisodamine: m/z 306.3 → 140.1 and 91.1; and homatropine: m/z 276.3 → 124.3 and 142.1). The tropane alkaloids exhibited excellent linearity in the range of 0.05–100 ng/mL in blood and 0.2–100 ng/mL in urine, with a limit of detection range from 0.02 to 0.05 ng/mL for biological materials. The extraction recoveries of atropine, scopolamine, and anisodamine were more than 53% in the blood and urine; the interday and intraday RSDs were less than 10%; the within-day and between-day accuracy were between ?9.8% and +8.8%. The present method is simple and rapid, as shown by its application to a clinical case. This method is useful for routine analysis of tropane alkaloids in cases of suspected tropane alkaloid poisoning.  相似文献   

13.
We present here a high-performance liquid chromatography−tandem mass spectrometry (LC-MS/MS) method for quantifying phytoestrogenic isoflavones (daidzein, equol, genistein, and O-desmethylangolensin) and lignans (enterodiol and enterolactone) in urine without the use of extraction or the preconcentration techniques inherent in existing methods. The development of this concept was made possible by use of atmospheric pressure photoionization (APPI); an ionization technique that we found to improve analyte sensitivity relative to electrospray ionization and atmospheric pressure chemical ionization for this particular group of compounds. The analytical performance of this method was equal to or exceeded that of comparable methods. Between-run coefficients of variation (CVs) across three quality control (QC) pool levels analyzed in duplicate over 20 days were 3.1–5.8% CV; within-run CVs were 2.3–6.0%. Accuracy, as determined by average spike recovery in QC pools, was generally within ±10% of being quantitative (100%). Relative limits of detection were 0.04–0.4 ng/mL urine, with absolute detection limits as low as 0.1 pg. This method was applied to the analysis of >2,500 urine specimens for the 2005–2006 Centers for Disease Control and Prevention’s National Health and Nutrition Examination Survey (NHANES). The method was capable of quantifying these compounds in 95–100% of study samples. This work is the first ever report of using APPI for the LC-MS/MS determination of these compounds in urine. It is also the first method of its kind to do so without any need for analyte extraction or preconcentration prior to analysis.  相似文献   

14.
In vivo measurement of multiple functionally related neurochemicals and metabolites (NMs) is highly interesting but remains challenging in the field of basic neuroscience and clinical research. We present here an analytical method for determining five functionally and metabolically related polar substances, including acetylcholine (quaternary ammonium), lactate and pyruvate (organic acids), as well as glutamine and glutamate (amino acids). These NMs are acquired from samples of the brain and the blood of non-human primates in parallel by dual microdialysis, and subsequently analyzed by a direct capillary hydrophilic interaction chromatography (HILIC)–mass spectrometry (MS) based method. To obtain high sensitivity in electrospray ionization (ESI)–MS, lactate and pyruvate were detected in negative ionization mode whereas the other NMs were detected in positive ionization mode during each HILIC-MS run. The method was validated for linearity, the limits of detection and quantification, precision, accuracy, stability and matrix effect. The detection limit of acetylcholine, lactate, pyruvate, glutamine, and glutamate was 150 pM, 3 μM, 2 μM, 5 nM, and 50 nM, respectively. This allowed us to quantitatively and simultaneously measure the concentrations of all the substances from the acquired dialysates. The concentration ratios of both lactate/pyruvate and glutamine/glutamate were found to be higher in the brain compared to blood (p < 0.05). The reliable and simultaneous quantification of these five NMs from brain and blood samples allows us to investigate their relative distribution in the brain and blood, and most importantly paves the way for future non-invasive studies of the functional and metabolic relation of these substances to each other.  相似文献   

15.
We report on the characterization by mass spectrometry (MS) of a rapid, reagentless and site-specific cleavage at the N-terminus of the amino acid cysteine (C) in peptides and proteins induced by the thermal decomposition at 220–250 °C for 10 s in solid samples. This thermally induced cleavage at C occurs under the same conditions and simultaneously to our previously reported thermally induced site-specific cleavage at the C-terminus of aspartic acid (D) (Zhang, S.; Basile, F. J. Proteome Res. 2007, 6, (5), 1700–1704). The C cleavage proceeds through cleavage of the nitrogen and α–carbon bond (N-terminus) of cysteine and produces modifications at the cleavage site with an amidation (−1 Da) of the N-terminal thermal decomposition product and a −32 Da mass change of the C-terminal thermal decomposition product, the latter yielding either an alanine or β-alanine residue at the N-terminus site. These modifications were confirmed by off-line thermal decomposition electrospray ionization (ESI)-MS, tandem MS (MS/MS) analyses and accurate mass measurements of standard peptides. Molecular oxygen was found to be required for the thermal decomposition and cleavage at C as it induced an initial cysteine thiol side chain oxidation to sulfinic acid. Similar to the thermally induced D cleavage, missed cleavages at C were also observed. The combined thermally induced digestion process at D and C, termed thermal decomposition/digestion (TDD), was observed on several model proteins tested under ambient conditions and the site-specificity of the method confirmed by MS/MS.  相似文献   

16.
This study presents a high-performance liquid chromatography–electrospray ionization–mass spectrometric (LC–ESI–MS) method for the simultaneous determination of tramadol and acetaminophen in human plasma using phenacetinum as the internal standard. After alkalization with saturated sodium bicarbonate, both compounds were extracted from human plasma with ethyl acetate and were separated by HPLC on a Hanbon LiChrospher CN column with a mobile phase of 10 mM ammonium acetate buffer containing 0.5% formic acid–methanol (40:60, v/v) at a flow rate of 1 mL min−1. Analytes were determined using electrospray ionization in a single quadrupole mass spectrometer. LC–ESI–MS was performed in the positive selected-ion monitoring (SIM) mode using target ions at [M+H]+ m/z 264.3 for tramadol, [M+H]+ m/z 152.2 for acetaminophen and [M+H]+ m/z 180.2 for phenacetinum. Calibration curves were linear over the range of 5–600 ng mL−1 for tramadol and 0.03–16 μg mL−1 for acetaminophen. The inter-run relative standard deviations were less than 14.4% for tramadol and 12.3% for acetaminophen. The intra-run relative standard deviations were less than 9.3% for tramadol and 7.9% for acetaminophen. The mean plasma extraction recovery for tramadol and acetaminophen were in the ranges of 82.7–85.9 and 83.6–85.3%. The method was applied to study the pharmacokinetics of a new formulation of tramadol/acetaminophen tablet in healthy Chinese volunteers.  相似文献   

17.
18.
This article describes an easy and innovative extraction procedure for cocaine and its primary metabolite, benzoylecgonine (BE), from hair consisting of sonication with H2O/0.1% formic acid for 4 h. The same extract was used for screening with an enzyme-linked immunoassay (ELISA) and confirmation by liquid chromatography–tandem mass spectrometry (LC–MS/MS). For the ELISA screening test a cutoff of 0.5 ng/mg was used according to the Society of Hair Testing recommendations. LC–MS/MS limits of detection (LODs) were established to be 10 pg/mg and 1 pg/mg for cocaine and BE, respectively. Linearity was obtained over a range of 0.2–5 ng/mg for BE (target analyte) in the ELISA screening test, while in the LC–MS/MS method the range was 0.10–10 ng/mg for cocaine and 0.01–10 ng/mg for BE. Intra- and interbatch coefficients of variation and mean relative errors were less than 20% for all analytes and concentrations studied. The validated ELISA and LC–MS/MS methods were applied to 48 hair samples and the results of both methods were compared; ELISA demonstrated a sensitivity and specificity of 89.2% and 10.8%.  相似文献   

19.
The application of electrospray ionization (ESI) ion trap mass spectrometry in the characterization of O-glucuronide conjugates of some drugs in urine is described. The conjugated metabolites formed in rabbit and human were separated by reversed-phase high-performance liquid chromatography (HPLC) and characterized by multi-stage mass spectrometry (MSn) experiments in negative ion mode. The ESI mass spectra showed a deprotonated molecule [M–H], which was chosen as precursor ion. Collision-induced dissociation (CID) of [M–H] in MSn experiments resulted in the appearance of glucuronate ‘fingerprint’ ions at m/z 175 and 113 as well as prominent aglycone ions which were the same as those produced from authentic specimens. This information can be used to identify this type of compound directly without the need for derivatization or hydrolysis of enzymes, providing a rapid and specific method for guiding the isolation and characterization of similar compounds in complex matrices with LC/MS. Received: 25 January 1999 / Revised: 19 April 1999 / Accepted: 13 May 1999  相似文献   

20.
A rapid, sensitive, and accurate high-performance liquid-chromatographic–mass spectrometric (HPLC–MS) method, with estazolam as internal standard, has been developed and validated for determination of aripiprazole in human plasma. After liquid–liquid extraction the compound was analyzed by HPLC on a C18 column, with acetonitrile—30 mm ammonium acetate containing 0.1% formic acid, 58:42 (v/v), as mobile phase, coupled with electrospray ionization mass spectrometry (ESI-MS). The protonated analyte was quantified by selected-ion recording (SIR) with a quadrupole mass spectrometer in positive-ion mode. Calibration plots were linear over the concentration range 19.9–1119.6 ng mL−1. Intra-day and inter-day precision (CV%) and accuracy (RE%) for quality-control samples (37.3, 124.4, and 622.0 ng mL−1) ranged between 2.5 and 9.0% and between 1.3 and 3.5%, respectively. Extraction recovery of aripiprazole from plasma was in the range 75.8–84.1%. The method enables rapid, sensitive, precise, and accurate measurement of the concentration of aripiprazole in human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号