首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new property of a one-dimensional periodic structure — amplification of the sum-frequency signal arising under the simultaneous action of two laser pulses on this structure with radiation frequencies corresponding to the edges of the fixed Bragg band gap — is experimentally observed and described. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 11, 718–721 (10 December 1999)  相似文献   

2.
Control over the wettability of solids and manufacturing of functional surfaces with special hydrophobic and self-cleaning properties has aroused great interest because of its significance for a vast range of applications in daily life, industry and agriculture. We report here a simple method for preparing stable superhydrophobic surfaces by irradiating silicon (Si) wafers with femtosecond (fs) laser pulses and subsequently coating them with chloroalkylsilane monolayers. It is possible, by varying the laser pulse fluence on the surface, to achieve control of the wetting properties through a systematic and reproducible variation of roughness at micro- and nano-scale which mimics both the topology of the “model” superhydrophobic surface—the natural lotus leaf—, as well as its wetting response. Water droplets can move along these irradiated superhydrophobic surfaces, under the action of small gravitational forces, and experience subsequent immobilization, induced by surface tension gradients. These results demonstrate the potential of manipulating liquid motion through selective laser patterning.  相似文献   

3.
L. Lis 《Il Nuovo Cimento D》1989,11(10):1377-1388
Summary In the paper the role of the opposite beams in laser generations is discussed on the basis of experimental investigations performed on the He−Ne long linear laser. It is stated that standing waves do not interact with atoms in one-photon transitions. Laser oscillations always avoid generating standing waves inside the laser medium. The best way to avoid such standing waves is laser generation in the form of one short pulse travelling to and fro inside the resonator—the self-locking generation. Also discussed is the laser generation of two or more pulses inside the resonator. The work was supported by CPBR 8.14.  相似文献   

4.
We suggest a protocol for quantum key distribution—a technology allowing two distant parties to create an unconditionally secure cryptographic key. For the creation of the key we suggest to use laser pulses weakened to the single-photon level of duration T, the pulse carrying the value “1” being shifted in time by T/2 compared to the pulse carrying the value “0”. The overlap of the pulses provides their non-orthogonality and, therefore, impossibility to discriminate between them with certainty. Besides the signal pulses the protocol uses coherent decoy pulses, having longer duration than the signal ones and providing a more effective protection from a wide class of attacks. Security of the protocol is based on interferometric control of the pulse coherence at the receiving station. We analyze the security of the protocol against a number of intercept-resend attacks and on the basis of this analysis substantiate the necessity of decoy state implementation.  相似文献   

5.
The results of examination of the GaAs-target erosion under irradiation by a high-power pulsed ion beam are reported. In the experiments, use was made of a high-power pulsed ion source with the following parameters: ion energy — 250 keV, target current density — 350 A/cm2, pulse duration — 80 ns, target energy density — up to 7 J/cm2. The target erosion coefficient and its dependence on the number of successive pulses are measured. It is found that the surface roughness parameter is increased with the number of successive beam pulses. A regular structure of surface relief is observed to form in the case where the number of pulses > 20–40. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 66–70, January, 2007.  相似文献   

6.
We present the results of an experimental study of the ablation energy thresholds and ablated mass for a number of refractory metals (Ti, Zr, Nb, Mo) by femtosecond (τ 0.5 = 45–70 fs) exposed to laser pulses in the ultraviolet — near infrared range (λ = 266, 400, 800 nm) under atmospheric conditions and under vacuum (p ~ 10–2 Pa). We have analyzed the ablation efficiency (mass yield per unit energy of the acting coherent radiation) and ablation energy thresholds vs. the laser pulse duration and photon energy.  相似文献   

7.
A theory of the nonlinear optical response of an atom interacting with a superposition of arbitrarily polarized fields is developed. The theory is based on the analytical solution of the boundary-value problem for an electron moving in a spherically symmetric intraatomic field and in the field of an external electromagnetic field. By means of the example of an argon atom interacting with a bichromatic field formed by the first and second harmonics of a Ti:sapphire laser, it is shown that, when an atom interacts with the field of two polarized pulses the polarization directions of which are not collinear, the response spectrum significantly depends on the laser radiation parameters—the duration and intensity of pulses, the time of delay between them, and the angle between the directions of polarization vectors. Generation of THz radiation is shown to be possible in the ionization-free regime due to intraatomic nonlinearity.  相似文献   

8.
A hybrid master oscillator–power amplifier (hybrid MOPA) scheme is proposed as a microlithography light source. The seed pulses are generated in the visible spectral range—where the necessary spectral purity is more easily achieved—and after frequency conversion are amplified in an excimer amplifier. The new concept enables us to decrease the bandwidth considerably, approaching the theoretical limit posed by the uncertainty relation. The feasibility of the new approach is demonstrated by a dye/excimer MOPA system, generating deep ultraviolet DUV (248-nm) pulses of 0.2-pm bandwidth.  相似文献   

9.
A synchronously mode-locked, cavity-dumped picosecond dye laser is described. The structure and intensity of the picosecond pulses measured under different conditions are reported. It was found that the structure of the pulses from the synchronously pumped dye laser depends critically on the length of the Ar+ laser pulses. At the shortest Ar+ laser pulses of about 70 ps the dye pulses are as short as 1.1 ps. With Ar+ laser pulses of 200 ps the dye laser pulses contains a broad satellite pulse which contains a large fraction of the total intensity. When a cavity dumper is added to the system one gets dye laser pulses 15–20 ps long with a substructure, which indicates incomplete mode-locking. Well mode-locked 1.5–2.0 ps pulses were obtained in the red part of the dye laser action spectrum, i.e. 620–650 nm for R6G, 595–608 nm for R 110 and 657–662 nm for RB, respectively. Addition of mode-locking dyes also improved the pulse quality at some wavelengths.  相似文献   

10.
B K Sinha  N Gopi  S K Goel 《Pramana》1979,12(4):377-390
Experiments performed with a 50 MW — 60 nsec ruby laser to estimate the temperature of the plasma produced on the planar targets of carbon as well as polyethylene are reported. Temperatures were estimated by two foil ratio technique. The temperatures of carbon and polyethylene plasma show aφ 2/9 dependance on flux in the flux regime of 1010 W/cm2 to 5 × 1011 W/cm2. The comparatively slower dependance is explained on the basis of purely collisional absorption, the effect being enhanced due to relatively long duration of the laser pulses. Scaling laws of plasma temperature against laser flux obtained by different workers in different flux regimes have been analysed on the basis of collisional and non-collisional absorption.  相似文献   

11.
Impact of a drop on a water surface is accompanied by a series of sound pulses propagating in air and underwater. Depending on the falling mode (drop size and initial velocity), pulses substantially differ in amplitude, duration, and modulation frequency. We study falling modes in which in addition to conventional sound packets—the shock pulse and single resonance sound packets—several packets are observed. Experiments were conducted with simultaneous recording of sound in air and underwater and were accompanied by synchronous video depiction of currents in the drop impact region. Comparison of videograms and phonograms demonstrate that the sources of sound packets are gas cavities of arbitrary shape detached from the underwater cavern under the action of large accelerations (several km/s2) during a sharp change in its surface area, which gradually achieve equilibrial elliptical and spherical shapes.  相似文献   

12.
Laser ablation of single cells through a sharpened optical fiber is used for the detection of metabolites by laser ablation electrospray ionization (LAESI) mass spectrometry (MS). Ablation of the same Allium cepa epidermal cell by consecutive pulses indicates the rupture of the cell wall by the second shot. Intracellular sucrose heterogeneity is detected by subsequent laser pulses pointing to rupturing the vacuolar membrane by the third exposure. Ion production by bursts of laser pulses shows that the drying of ruptured A. cepa cells occurs in ∼50 s at low pulse rates (10 pulses/s bursts) and significantly faster at high pulse rates (100 pulses/s bursts). These results point to the competing role of cytoplasm ejection and evaporative drying in diminishing the LAESI-MS signal in ∼50 s or 100 laser pulses, whichever occurs first.  相似文献   

13.
We have experimentally investigated the interaction of high-power neodymium laser pulses in the intensity range 1013–1014 W/cm2 with flat low-density (0.5–10 mg/cm3) agar-agar targets under conditions of interest for problems of inertial nuclear fusion. Optical and x-ray methods with high temporal and spatial resolution were used to examine the dependence of absorption and scattering of the incident beam on the initial mean density and thickness of the irradiated samples. We show that when a porous target is irradiated, a bulk absorption layer of high-temperature plasma is produced inside the target whose dimensions are determined by the initial density of the material. The time dependence and spectral composition of the harmonics 2ω 0 and 3ω 0/2 observed in the plasma-scattered radiation are measured. A theoretical model is developed that describes the interaction of high-power laser pulses with a porous medium. Predictions of the model, based on the hypothesis of two stages of homogenization of the target material—a fast stage (0.1–0.3 ns) and a slow stage (1–3 ns), are in good agreement with the experimental data. Zh. éksp. Teor. Fiz. 115, 805–818 (March 1999)  相似文献   

14.
We have developed a 6–12 μm mid-infrared (MIR) femtosecond laser source for glyco-protein structure analysis. The MIR femtosecond laser pulses are generated by a differential frequency generation (DFG) configuration with a combination of Ti:sapphire based regeneratively amplified femtosecond laser pulses (780 nm, 160 fs, 1 mJ) and a β-BaB2O4 (BBO) based optical parametric amplifier (OPA). The MIR pulse energy exceeds 4.5 μJ, where a glyco-protein molecule has resonant absorption lines due to the vibrational–rotational transitions. The pulse width is estimated to be less than 1 ps according to the cross correlation measurement between the two OPA output pulses. Using the MIR femtosecond laser pulses, we demonstrated photo-dissociation of the sialyl Lewis X (sLeX) proton added ion, which is the first time to the best of our knowledge. PACS 42.65.Re; 42.62.-b; 42.60.-b; 42.65.-k; 87.50  相似文献   

15.
A laser-based method for measuring the three components of the velocity in a plane simultaneously and instantaneously without seed particles is presented. This is achieved by combining a laser flow-tagging technique with stereoscopic detection, in which the tagged flow is viewed from two different directions. A single CCD camera is employed for this purpose by using a new optical detection system. The flow tagging is performed by two consecutive laser pulses, i.e., “write” and “read” laser pulses. The write laser creates a grid of tracer molecules (NO) by inducing a photodissociation process. The three-dimensional motion of the tracer molecules is measured by a thick read laser sheet. Received: 22 July 1999 / Revised version: 5 August 1999 / Published online: 30 September 1999  相似文献   

16.
A scheme for the construction of fiber laser systems for the generation of tunable ultrashort optical pulses is proposed. The scheme is based on the self-Raman shift of the soliton frequency in dispersion-decreasing fibers with the subsequent spectral broadening owing to the supercontinuum generation in a short highly nonlinear fiber and the compression in the corresponding fiber compressor. An all-fiber laser system for the generation of ultrashort laser pulses in the wavelength range 1.6–2.0 μm is experimentally demonstrated. In particular, the shortest pulses with a duration of 24 fs are generated at wavelengths of 1.8–1.9 μm, which corresponds to less than four optical cycles.  相似文献   

17.
We present two sets of experimental results on the ablation-rate decrease with increase of the number of consecutive laser pulses hitting the same spot on the target surface. We have studied laser ablation of a carbon target with nanosecond pulses in two different interaction regimes: one with a XeCl laser (λ=308 nm) and the other with a Nd:YAG laser (λ=1064 nm), in both cases at the intensity ∼5×108 W/cm2 Two different mechanisms were found to be responsible for the ablation-rate decrease; they are directly related to the two different laser–matter interaction regimes. The UV-laser interaction is in the regime of transparent vapour (surface absorption). The increase of the neutral vapour density in the crater produced by the preceding laser pulses is the main reason for the decrease of ablation rate. With the IR laser each single laser pulse interacts with a partially ionised plume. With increase of the number of pulses hitting the same spot on the target surface, the laser–matter interaction regime gradually changes from the near-surface absorption to the volume absorption, resulting in the decrease in absorption in the target and thus in the decrease in the ablation rate. The change in the evaporation rate was considered for both vacuum and reactive-gas environments. Received: 21 February 2001 / Accepted: 26 February 2001 / Published online: 23 May 2001  相似文献   

18.
Results of investigations into the time characteristics of photosensitive layers based on Ge/Si nanoheterostructures excited by femtosecond laser pulses with a wavelength of 1.55 μm are given. It is demonstrated that the leading front duration of the photoresponse pulse for the examined specimens excited by laser pulses of 120 fs duration does not exceed 30–40 пs.  相似文献   

19.
We describe an interferometric time-resolved photoemission technique that makes it possible to simultaneously observe the decay of optical induced polarizations and populations at surfaces in a two-color excitation scheme. In this scheme initially unoccupied electronic surface states are coherently excited by the interaction of laser pulses with frequency ωa and the two-photon polarization which is induced by laser pulses with frequency ωa/2. Interference is observed by changing the delay between both laser pulses using an actively stabilized two-color Mach–Zehnder interferometer. We demonstrate this technique for excitation of the n=1 image-potential state on a Cu(100) surface. PACS 78.47.+p; 79.60.Bm; 73.20.-r; 82.53.Kp; 42.50.Md  相似文献   

20.
The conditions for the scaled synthesis of single wall carbon nanotubes (SWNTs) and single wall carbon nanohorns (SWNHs) by laser vaporization at high temperatures are investigated and compared using in situ diagnostics. An industrial Nd:YAG laser (600 W, 1–500 Hz repetition rate) with tunable pulse widths (0.5–50 ms) is utilized to explore conditions for high-yield production. High-speed videography (50000 frames/s) of the laser plume and pyrometry of the target surface are correlated with ex situ high resolution transmission electron microscopy analysis of the products for pure carbon targets and carbon/catalyst targets to understand the effects of the processing conditions on the resulting nanostructures. Carbon is shown to self-assemble into single-wall nanohorn structures at rates of ∼1 nm/ms, which is comparable to the catalyst-assisted SWNT growth rates. Two regimes of laser ablation, cumulative ablation by multiple pulses and continuous ablation by individual pulses, were explored. Cumulative ablation with spatially overlapping 0.5-ms pulses is favorable for the high yield and production rate of SWNTs at ∼6 g/h while continuous ablation by individual long laser pulses (∼20 ms) at high temperatures results in the highest yield of SWNHs at ∼10 g/h. Adjustment of the laser pulse width is shown to control SWNH morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号