首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this paper we consider a nonlinear evolution reaction–diffusion system governed by multi-valued perturbations of m-dissipative operators, generators of nonlinear semigroups of contractions. Let X and Y be real Banach spaces, ${\mathcal{K}}In this paper we consider a nonlinear evolution reaction–diffusion system governed by multi-valued perturbations of m-dissipative operators, generators of nonlinear semigroups of contractions. Let X and Y be real Banach spaces, K{\mathcal{K}} be a nonempty and locally closed subset in \mathbbR ×X×YA:D(A) í X\rightsquigarrow X, B:D(B) í Y\rightsquigarrow Y{\mathbb{R} \times X\times Y,\, A:D(A)\subseteq X\rightsquigarrow X, B:D(B)\subseteq Y\rightsquigarrow Y} two m-dissipative operators, F:K ? X{F:\mathcal{K} \rightarrow X} a continuous function and G:K \rightsquigarrow Y{G:\mathcal{K} \rightsquigarrow Y} a nonempty, convex and closed valued, strongly-weakly upper semi-continuous (u.s.c.) multi-function. We prove a necessary and a sufficient condition in order that for each (t,x,h) ? K{(\tau,\xi,\eta)\in \mathcal{K}}, the next system
{ lc u¢(t) ? Au(t)+F(t,u(t),v(t))    t 3 tv¢(t) ? Bv(t)+G(t,u(t),v(t))    t 3 tu(t)=x,    v(t)=h, \left\{ \begin{array}{lc} u'(t)\in Au(t)+F(t,u(t),v(t))\quad t\geq\tau \\ v'(t)\in Bv(t)+G(t,u(t),v(t))\quad t\geq\tau \\ u(\tau)=\xi,\quad v(\tau)=\eta, \end{array} \right.  相似文献   

2.
Let k be a field of characteristic 0 and let [`(k)] \bar{k} be a fixed algebraic closure of k. Let X be a smooth geometrically integral k-variety; we set [`(X)] = X ×k[`(k)] \bar{X} = X{ \times_k}\bar{k} and denote by [`(X)] \bar{X} . In [BvH2] we defined the extended Picard complex of X as the complex of Gal( [`(k)]
/ k ) Gal\left( {{{{\bar{k}}} \left/ {k} \right.}} \right) -modules
\textDiv( [`(X)] ) {\text{Div}}\left( {\bar{X}} \right) is in degree 1. We computed the isomorphism class of \textUPic( [`(G)] ) {\text{UPic}}\left( {\bar{G}} \right) in the derived category of Galois modules for a connected linear k-group G.  相似文献   

3.
Let G be a finite soluble group and F\mathfrakX(G) {\Phi_\mathfrak{X}}(G) an intersection of all those maximal subgroups M of G for which G
/ \textCor\texteG(M) ? \mathfrakX {{G} \left/ {{{\text{Cor}}{{\text{e}}_G}(M)}} \right.} \in \mathfrak{X} . We look at properties of a section F( G / F\mathfrakX(G) ) F\left( {{{G} \left/ {{{\Phi_\mathfrak{X}}(G)}} \right.}} \right) , which is definable for any class \mathfrakX \mathfrak{X} of primitive groups and is called an \mathfrakX \mathfrak{X} -crown of a group G. Of particular importance is the case where all groups in \mathfrakX \mathfrak{X} have equal socle length.  相似文献   

4.
Let X be a complex Banach space and let B(X){\mathcal{B}(X)} be the space of all bounded linear operators on X. For x ? X{x \in X} and T ? B(X){T \in \mathcal{B}(X)}, let rT(x) = limsupn ? ¥ || Tnx|| 1/n{r_{T}(x) =\limsup_{n \rightarrow \infty} \| T^{n}x\| ^{1/n}} denote the local spectral radius of T at x. We prove that if j: B(X) ? B(X){\varphi : \mathcal{B}(X) \rightarrow \mathcal{B}(X)} is linear and surjective such that for every x ? X{x \in X} we have r T (x) = 0 if and only if rj(T)(x) = 0{r_{\varphi(T)}(x) = 0}, there exists then a nonzero complex number c such that j(T) = cT{\varphi(T) = cT} for all T ? B(X){T \in \mathcal{B}(X) }. We also prove that if Y is a complex Banach space and j:B(X) ? B(Y){\varphi :\mathcal{B}(X) \rightarrow \mathcal{B}(Y)} is linear and invertible for which there exists B ? B(Y, X){B \in \mathcal{B}(Y, X)} such that for y ? Y{y \in Y} we have r T (By) = 0 if and only if rj( T) (y)=0{ r_{\varphi ( T) }(y)=0}, then B is invertible and there exists a nonzero complex number c such that j(T) = cB-1TB{\varphi(T) =cB^{-1}TB} for all T ? B(X){T \in \mathcal{B}(X)}.  相似文献   

5.
The main result is that, for any projective compact analytic subset Y of dimension q > 0 in a reduced complex space X, there is a neighborhood Ω of Y such that, for any covering space ${\Upsilon\colon\widehat X\to X}The main result is that, for any projective compact analytic subset Y of dimension q > 0 in a reduced complex space X, there is a neighborhood Ω of Y such that, for any covering space U\colon[^(X)]? X{\Upsilon\colon\widehat X\to X} in which [^(Y)] o U-1(Y){\widehat Y\equiv\Upsilon^{-1}(Y)} has no noncompact connected analytic subsets of pure dimension q with only compact irreducible components, there exists a C exhaustion function j{\varphi} on [^(X)]{\widehat X} which is strongly q-convex on [^(W)]=U-1(W){\widehat\Omega=\Upsilon^{-1}(\Omega)} outside a uniform neighborhood of the q-dimensional compact irreducible components of [^(Y)]{\widehat Y}.  相似文献   

6.
Soit _boxclose{\mathcal V} un anneau de valuation discrète complet d’inégales caractéristiques (0, p), de corps résiduel parfait k, de corps des fractions K. Soient X une variété sur k, Y un ouvert de X. Nous prolongeons le théorème de pleine fidélité de Kedlaya de la manière suivante (en effet, nous ne supposons pas Y lisse): le foncteur canonique F\text-Isoc f (Y,X/K) ? F\text-Isoc f (Y,Y/K) {F\text{-}\mathrm{Isoc} ^{\dag} (Y,X/K) \to F\text{-}\mathrm{Isoc} ^{\dag} (Y,Y/K) } est pleinement fidèle. Supposons à présent Y lisse. Nous construisons la catégorie Isoc ff (Y,X/K){\mathrm{Isoc} ^{\dag\dag} (Y,X/K) } des isocristaux partiellement surcohérents sur (Y, X) dont les objets sont certains D{\mathcal D} -modules arithmétiques. De plus, nous vérifions l’équivalence de catégories sp (Y,X),+: Isoc f (Y,X/K) @ Isoc ff (Y,X/K){{\rm sp} _{(Y,X),+}: \mathrm{Isoc} ^{\dag} (Y,X/K) \cong \mathrm{Isoc} ^{\dag\dag} (Y,X/K)} .  相似文献   

7.
We construct a fundamental solution of the equation ${\partial_t - \Delta^{\alpha/2} - b(\cdot, \cdot) \cdot\nabla_{x} = 0}We construct a fundamental solution of the equation ?t - Da/2 - b(·, ·) ·?x = 0{\partial_t - \Delta^{\alpha/2} - b(\cdot, \cdot) \cdot\nabla_{x} = 0} for a ? (1, 2){\alpha \in (1, 2)} and b satisfying a certain integral space-time condition. We also show it has α-stable upper and lower bounds.  相似文献   

8.
We prove that a crepant resolution π : YX of a Ricci-flat Kähler cone X admits a complete Ricci-flat Kähler metric asymptotic to the cone metric in every Kähler class in ${H^2_c(Y,\mathbb{R})}We prove that a crepant resolution π : YX of a Ricci-flat K?hler cone X admits a complete Ricci-flat K?hler metric asymptotic to the cone metric in every K?hler class in H2c(Y,\mathbbR){H^2_c(Y,\mathbb{R})}. A K?hler cone (X,[`(g)]){(X,\bar{g})} is a metric cone over a Sasaki manifold (S, g), i.e. ${X=C(S):=S\times\mathbb{R}_{ >0 }}${X=C(S):=S\times\mathbb{R}_{ >0 }} with [`(g)]=dr2 +r2 g{\bar{g}=dr^2 +r^2 g}, and (X,[`(g)]){(X,\bar{g})} is Ricci-flat precisely when (S, g) Einstein of positive scalar curvature. This result contains as a subset the existence of ALE Ricci-flat K?hler metrics on crepant resolutions p:Y? X=\mathbbCn /G{\pi:Y\rightarrow X=\mathbb{C}^n /\Gamma}, with G ì SL(n,\mathbbC){\Gamma\subset SL(n,\mathbb{C})}, due to P. Kronheimer (n = 2) and D. Joyce (n > 2). We then consider the case when X = C(S) is toric. It is a result of A. Futaki, H. Ono, and G. Wang that any Gorenstein toric K?hler cone admits a Ricci-flat K?hler cone metric. It follows that if a toric K?hler cone X = C(S) admits a crepant resolution π : YX, then Y admits a T n -invariant Ricci-flat K?hler metric asymptotic to the cone metric (X,[`(g)]){(X,\bar{g})} in every K?hler class in H2c(Y,\mathbbR){H^2_c(Y,\mathbb{R})}. A crepant resolution, in this context, is a simplicial fan refining the convex polyhedral cone defining X. We then list some examples which are easy to construct using toric geometry.  相似文献   

9.
Using analytical tools, we prove that for any simple graph G on n vertices and its complement [`(G)]\bar G the inequality $\mu \left( G \right) + \mu \left( {\bar G} \right) \leqslant \tfrac{4} {3}n - 1$\mu \left( G \right) + \mu \left( {\bar G} \right) \leqslant \tfrac{4} {3}n - 1 holds, where μ(G) and m( [`(G)] )\mu \left( {\bar G} \right) denote the greatest eigenvalue of adjacency matrix of the graphs G and [`(G)]\bar G respectively.  相似文献   

10.
Let F ? \mathbbC[ XY ]2 F \in \mathbb{C}{\left[ {X,\,Y} \right]^2} be an étale map of degree deg F = d. An étale map G ? \mathbbC[ X,Y ]2 G \in \mathbb{C}{\left[ {X,Y} \right]^2} is called a d-inverse approximation of F if deg Gd and FG =(X + A(X, Y), Y + B(X, Y)) and GF =(X + C(X, Y), Y + D(X, Y)), where the orders of the four polynomials A, B, C, and D are greater than d. It is a well-known result that every \mathbbC2 {\mathbb{C}^2} -automorphism F of degree d has a d-inverse approximation, namely, F −1. In this paper, we prove that if F is a counterexample of degree d to the two-dimensional Jacobian conjecture, then F has no d-inverse approximation. We also give few consequences of this result. Bibliography: 18 titles.  相似文献   

11.
The perturbation classes problem for semi-Fredholm operators asks when the equalities SS(X,Y)=PF+(X,Y){\mathcal{SS}(X,Y)=P\Phi_+(X,Y)} and SC(X,Y)=PF-(X,Y){\mathcal{SC}(X,Y)=P\Phi_-(X,Y)} are satisfied, where SS{\mathcal{SS}} and SC{\mathcal{SC}} denote the strictly singular and the strictly cosingular operators, and PΦ+ and PΦ denote the perturbation classes for upper semi-Fredholm and lower semi-Fredholm operators. We show that, when Y is a reflexive Banach space, SS(Y*,X*)=PF+(Y*,X*){\mathcal{SS}(Y^*,X^*)=P\Phi_+(Y^*,X^*)} if and only if SC(X,Y)=PF-(X,Y),{\mathcal{SC}(X,Y)=P\Phi_-(X,Y),} and SC(Y*,X*)=PF-(Y*,X*){\mathcal{SC}(Y^*,X^*)=P\Phi_-(Y^*,X^*)} if and only if SS(X,Y)=PF+(X,Y){\mathcal{SS}(X,Y)=P\Phi_+(X,Y)}. Moreover we give examples showing that both direct implications fail in general.  相似文献   

12.
13.
Vertex-Distinguishing Edge Colorings of Graphs with Degree Sum Conditions   总被引:1,自引:0,他引:1  
An edge coloring is called vertex-distinguishing if every two distinct vertices are incident to different sets of colored edges. The minimum number of colors required for a vertex-distinguishing proper edge coloring of a simple graph G is denoted by c¢vd(G){\chi'_{vd}(G)}. It is proved that c¢vd(G) £ D(G)+5{\chi'_{vd}(G)\leq\Delta(G)+5} if G is a connected graph of order n ≥ 3 and s2(G) 3 \frac2n3{\sigma_{2}(G)\geq\frac{2n}{3}}, where σ 2(G) denotes the minimum degree sum of two nonadjacent vertices in G.  相似文献   

14.
If G has a nilpotent normal p-complement and V is a finite, faithful and completely reducible G-module of characteristic p, we prove that there exist ${v_1, v_2 \in V}If G has a nilpotent normal p-complement and V is a finite, faithful and completely reducible G-module of characteristic p, we prove that there exist v1, v2 ? V{v_1, v_2 \in V} such that CG(v1)?CG(v2) = P{{\bf C}_{G}{(v_1)}\cap {\bf C}_{G}{(v_2)} = P} , where P ? Sylp(G){P \in {\rm Syl}_p(G)} . We hence deduce that, if the normal p-complement K is nontrivial, there exists v ? CV(P){v \in {\bf C}_{V}(P)} such that |K : C K (v)|2 > |K|.  相似文献   

15.
Let G be a connected reductive subgroup of a complex connected reductive group [^(G)]\hat{G}. Fix maximal tori and Borel subgroups of G and [^(G)]{\hat{G}}. Consider the cone LR(G,[^(G)])\mathcal{LR}(G,{\hat{G}}) generated by the pairs (n,[^(n)])(\nu,{\hat{\nu}}) of dominant characters such that Vn*V_{\nu}^{*} is a submodule of V[^(n)]V_{{\hat{\nu}}} (with usual notation). Here we give a minimal set of inequalities describing LR(G,[^(G)])\mathcal{LR}(G,{\hat{G}}) as a part of the dominant chamber. In other words, we describe the facets of LR(G,[^(G)])\mathcal{LR}(G,{\hat{G}}) which intersect the interior of the dominant chamber. We also describe smaller faces. Finally, we are interested in some classical redundant inequalities.  相似文献   

16.
Let G ì \mathbb C G \subset {\mathbb C} be a finite region bounded by a Jordan curve L: = ?G L: = \partial G , let W: = \textext[`(G)] \Omega : = {\text{ext}}\bar{G} (with respect to [`(\mathbb C)] {\overline {\mathbb C}} ), $ \Delta : = \left\{ {z:\left| z \right| > 1} \right\} $ \Delta : = \left\{ {z:\left| z \right| > 1} \right\} , and let w = F(z) w = \Phi (z) be a univalent conformal mapping of Ω onto Δ normalized by $ \Phi \left( \infty \right) = \infty, \;\Phi '\left( \infty \right) > 0 $ \Phi \left( \infty \right) = \infty, \;\Phi '\left( \infty \right) > 0 . By A p (G); p > 0; we denote a class of functions f analytic in G and satisfying the condition
|| f ||App(G): = òG | f(z) |pdsz < ¥, \left\| f \right\|_{Ap}^p(G): = \int\limits_G {{{\left| {f(z)} \right|}^p}d{\sigma_z} < \infty, }  相似文献   

17.
Given a binary relation R between the elements of two sets X and Y and a natural number k, it is shown that there exist k injective maps f1, f2,...,fk: X \hookrightarrow Y X \hookrightarrow Y with # {f1(x), f2(x),...,fk(x)}=k    and    (x,f1(x)), (x, f2(x)),...,(x, fk(x)) ? R \# \{f_1(x), f_2(x),...,f_k(x)\}=k \quad{\rm and}\quad (x,f_1(x)), (x, f_2(x)),...,(x, f_k(x)) \in R for all x ? X x \in X if and only if the inequality k ·# A £ ?y ? Y min(k, #{a ? A | (a,y) ? R}) k \cdot \# A \leq \sum_{y \in Y} min(k, \#\{a \in A \mid (a,y) \in R\}) holds for every finite subset A of X, provided {y ? Y | (x,y) ? R} \{y \in Y \mid (x,y) \in R\} is finite for all x ? X x \in X .¶Clearly, as suggested by this paper's title, this implies that, in the context of the celebrated Marriage Theorem, the elements x in X can (simultaneously) marry, get divorced, and remarry again a partner from their favourite list as recorded by R, for altogether k times whenever (a) the list of favoured partners is finite for every x ? X x \in X and (b) the above inequalities all hold.¶In the course of the argument, a straightforward common generalization of Bernstein's Theorem and the Marriage Theorem will also be presented while applications regarding (i) bases in infinite dimensional vector spaces and (ii) incidence relations in finite geometry (inspired by Conway's double sum proof of the de Bruijn-Erdös Theorem) will conclude the paper.  相似文献   

18.
Let \frak X, \frak F,\frak X\subseteqq \frak F\frak {X}, \frak {F},\frak {X}\subseteqq \frak {F}, be non-trivial Fitting classes of finite soluble groups such that G\frak XG_{\frak {X}} is an \frak X\frak {X}-injector of G for all G ? \frak FG\in \frak {F}. Then \frak X\frak {X} is called \frak F\frak {F}-normal. If \frak F=\frak Sp\frak {F}=\frak {S}_{\pi }, it is known that (1) \frak X\frak {X} is \frak F\frak {F}-normal precisely when \frak X*=\frak F*\frak {X}^{\ast }=\frak {F}^{\ast }, and consequently (2) \frak F í \frak X\frak N\frak {F}\subseteq \frak {X}\frak {N} implies \frak X*=\frak F*\frak {X}^{\ast }=\frak {F}^{\ast }, and (3) there is a unique smallest \frak F\frak {F}-normal Fitting class. These assertions are not true in general. We show that there are Fitting classes \frak F\not = \frak Sp\frak {F}\not =\frak {S}_{\pi } filling property (1), whence the classes \frak Sp\frak {S}_{\pi } are not characterized by satisfying (1). Furthermore we prove that (2) holds true for all Fitting classes \frak F\frak {F} satisfying a certain extension property with respect to wreath products although there could be an \frak F\frak {F}-normal Fitting class outside the Lockett section of \frak F\frak {F}. Lastly, we show that for the important cases \frak F=\frak Nnn\geqq 2\frak {F}=\frak {N}^{n},\ n\geqq 2, and \frak F=\frak Sp1?\frak Sprpi \frak {F}=\frak {S}_{p_{1}}\cdots \frak {S}_{p_{r}},\ p_{i} primes, there is a unique smallest \frak F\frak {F}-normal Fitting class, which we describe explicitly.  相似文献   

19.
We study the solvability of the minimization problem
minh ? Ka ò0T a(t)[ f( |h¢(t)| ) + g( h(t) ) ]  dt,\mathop {\min }\limits_{\eta \in \mathcal{K}_\alpha } \int_0^T {\alpha (t)\left[ {f\left( {|\eta '(t)|} \right) + g\left( {\eta (t)} \right)} \right]} \,dt,  相似文献   

20.
Let G be a finite group. Denote by Irr(G) the set of all irreducible complex characters of G. Let cd(G)={c(1)  |  c ? Irr(G)}{{\rm cd}(G)=\{\chi(1)\;|\;\chi\in {\rm Irr}(G)\}} be the set of all irreducible complex character degrees of G forgetting multiplicities, and let X1(G) be the set of all irreducible complex character degrees of G counting multiplicities. Let H be any non-abelian simple exceptional group of Lie type. In this paper, we will show that if S is a non-abelian simple group and cd(S) í cd(H){{\rm cd}(S)\subseteq {\rm cd}(H)} then S must be isomorphic to H. As a consequence, we show that if G is a finite group with X1(G) í X1(H){{\rm X}_1(G)\subseteq {\rm X}_1(H)} then G is isomorphic to H. In particular, this implies that the simple exceptional groups of Lie type are uniquely determined by the structure of their complex group algebras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号