共查询到17条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
5-甲基胞嘧啶在哺乳动物细胞中具有广泛的作用.而它被双脱氧家族Tet蛋白氧化所得的产物5-羟甲基胞嘧啶、5-醛基胞嘧啶和5-羧基胞嘧啶也被证明在细胞发育和5-甲基胞嘧啶动态平衡调控中具有关键的作用.已有的研究结果表明,Tet蛋白能够识别双链DNA上的5-甲基胞嘧啶,并将其氧化成5-羟甲基胞嘧啶、5-醛基胞嘧啶和5-羧基胞嘧啶.我们通过质谱仪检测发现,老鼠Tet1蛋白的DNA结合结构域还能识别和氧化单链DNA上的5-甲基胞嘧啶.这一发现暗示我们,Tet蛋白家族不但具有已经发现的氧化双链DNA上5-甲基胞嘧啶的功能,还有可能作用于DNA的复制及转录,甚至具有氧化单链RNA上对应的甲基修饰碱基的能力. 相似文献
5.
6.
基于AuNPs/PDDA-GO纳米复合物制备了一种新型电化学免疫传感器, 并将其用于SirT1的检测. 首先, 在电极表面修饰复合材料AuNPs/PDDA-GO, 然后将目标蛋白SirT1固定到修饰了AuNPs/PDDA-GO的电极表面, 再通过特异性免疫反应结合一抗(Ab1)和辣根过氧化酶标记的二抗分子(HRP-Ab2), 最后用示差脉冲伏安法检测电流信号, 实现了对SirT1蛋白水平的测定. 在优化的实验条件下, SirT1蛋白的浓度在0.1~100 ng/mL范围内与响应电流呈良好线性关系, 检出限为0.029 ng/mL. 相似文献
7.
基于纳米金固定半抗原的电化学免疫传感器灵敏检测克伦特罗 总被引:3,自引:0,他引:3
研制了一种基于纳米金固定半抗原的间接竞争电化学免疫传感器,可灵敏检测克伦特罗.在金电极表面组装1,6-己二硫醇单分子膜,通过Au-S共价作用连接纳米金颗粒,通过吸附作用固定克伦特罗牛血清白蛋白偶联物.样品中的待测组分与固定化的克伦特罗偶联物竞争结合单克隆抗体,碱性磷酸酯酶标记的二抗选择性地与电极表面捕获的一抗反应,进而催化底物1-萘酚磷酸酯水解生成1-萘酚,在电极表面氧化产生电信号.在优化的实验条件下,克伦特罗浓度在0.1~1000 μg/L范围内与电流强度线性相关,线性方程为I(A)-8.79× 10-7-2.66× 10-7logC (μg/L),相关系数0.9960,检出限达20 ng/L.同时测定了猪肉及猪肝样品中克伦特罗含量,相对标准偏差平均值为7.0%,加标回收率在89.1%~105.6%之间,与传统的间接竞争酶联免疫吸附法对照,结果无显著性差异. 相似文献
8.
采用石墨烯(GS)和壳聚糖(CS)复合膜修饰玻碳电极(GS-CS/GCE),利用1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基丁二酰亚胺(NHS)(4∶1)活化GS-CS/GCE,共价固定多环芳烃抗体(anti-PAHs),构建灵敏度高、稳定性好的非标记电流型免疫传感器,用于1-芘丁酸(PBA)的检测。运用扫描电子显微镜对GS-CS复合膜的形貌进行表征。在pH 7.0含10 mmol/L K3Fe(CN)6和0.1 mmol/L KCl的磷酸盐溶液中,通过循环伏安法和示差脉冲伏安法研究修饰电极表面的电化学性质,并考察了免疫传感器的电化学性能。研究表明,由于石墨烯和壳聚糖的协同作用,GS-CS修饰的玻碳电极在Fe(CN)64-/3-溶液中的峰电流明显增大,有利于提高免疫传感器的灵敏度。在优化实验条件下,电极表面的anti-PAHs抗体固定量显著提高,增强了电极的分子识别性能。由于anti-PAHs抗体-抗原结合物的导电性较差,免疫传感器的峰电流随着待测溶液中PBA浓度的增大而减小,PBA浓度在0.1~80μg/L范围内呈良好的线性关系,检出限为0.03μg/L。该免疫传感器重现性好、特异性强,用于实际样品的测定,回收率为90%~105%。 相似文献
9.
电化学免疫传感器在食品安全检测中的应用进展 总被引:1,自引:0,他引:1
介绍了3种电化学免疫传感器的组装、构建,着重评论了近十年来其在食品安全检测中的应用研究,并对其前景进行了展望(引用文献30篇)。 相似文献
10.
11.
12.
Danilo M. Dos Santos Fernanda L. Migliorini Andrey C. Soares Luiz H. C. Mattoso Osvaldo N. Oliveira Jr. Daniel S. Correa 《Electroanalysis》2023,35(1):e202100672
A disposable electrochemical immunosensor for on-site detection of aflatoxin B1(AFB1), one of the most toxic mycotoxins in agri-food products, was fabricated through a low-cost cut-printing method and then modified with zein/polypyrrole(PPy) electrospun nanofibers onto which anti-AFB1 monoclonal antibodies were immobilized covalently. Fabrication was possible with an innovative and simple approach to adsorb nanofibers onto the working electrode during electrospinning. Electrochemical impedance spectroscopy was employed as the principle of detection, and the data collected with a portable potentiostat were treated with information visualization techniques. The nanostructured immunosensor showed a high sensitivity for AFB1 with a linear detection range from 0.25 to 10 ng mL−1 and a theoretical limit of detection of 0.092 ng mL−1, which is adequate to detect AFB1 in food, according to regulatory agencies. 相似文献
13.
Yanwei Wang Dongdong Ma Gaiping Zhang Xuannian Wang Jingming Zhou Yumei Chen Xiaojuan You Chao Liang Yanhua Qi Yuya Li Aiping Wang 《Molecules (Basel, Switzerland)》2022,27(1)
A sensitive electrochemical immunosensor was prepared for rapid detection of ASA based on arsanilic acid (ASA) monoclonal antibody with high affinity. In the preparation of nanomaterials, polyethyleneimine (PEI) improved the stability of the solution and acted as a reducing agent to generate reduced graphene oxide (rGO) with relatively strong conductivity, thereby promoting the transfer of electrons. The dual conductivity of rGO and silver nanoparticles (AgNPs) improved the sensitivity of the sensor. The synthesis of nanomaterials were confirmed by UV-Vis spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy. In the optimal experiment conditions, the sensor could achieve the detection range of 0.50–500 ng mL−1 and the limit of detection (LOD) of 0.38 ng mL−1 (S/N = 3). Moreover, the sensor exhibited excellent specificity and acceptable stability, suggesting that the proposed sensor possessed a good potential in ASA detection. Thus, the as-prepared biosensor may be a potential way for detecting other antibiotics in meat and animal-derived foods. 相似文献
14.
Jing Ma Dai Li Bolu Sun Xiaohui Hou Xinru Zhang-Peng Wen Li Yan Zhang Fangdi Hu Xiaofeng Shi 《Electroanalysis》2022,34(4):761-771
The accurate and sensitive analysis of rheumatoid arthritis(RA) trace biomarkers is essential for early warning and diagnosis of RA, while anti-cyclic citrullinated peptide antibody (anti-CCP-ab) is a specific one. In this study, a simple label-free electrochemical immunosensor for the detection of anti-CCP-ab was constructed with nitrogen-doped graphene (N−G) and gold nanoparticles (AuNPs). The proposed non-enzyme immunosensor had exhibited high specificity, selectivity, and stability in the linear calibration curve range from 0.125∼2000 pg mL-1 and has been successfully used in the detection of anti-CCP-ab in human serum, providing a new idea for the early diagnosis of RA. 相似文献
15.
《Analytical letters》2012,45(8):1229-1240
Polyaniline (PANI) conducting polymers have attracted increasing interest as a transducer material for biosensors applications. In this study, we demonstrate the use of PANI nanowires (NWs) as immobilization platforms in the configuration of an electrochemical immunosensor for label free detection of Japanese encephalitis virus. The PANI NWs were synthesized on the surface of an interdigitated platinum (Pt) microelectrode via electrochemical growth. The morphology and characteristics of the PANI NWs on the Pt microelectrode were verified by scanning electron microscopy and Fourier transform infrared spectroscopy. The anti- Japanese encephalitis virus polyclonal IgG antibody was then covalently immobilized on the PANI NWs-coated Pt microelectrode by using 1-ethyl-3-(3-dimethyaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimde (NHS). The detection of Japanese encephalitis virus antigens was analyzed by electrochemical impedance spectroscopy (EIS). The developed PANI NWs-based electrochemical immunosensor could detect the Japanese encephalitis virus with a detection limit below 10 ng/ml. The results from EIS analysis also indicate that when the PANI NWs were exposed to nonspecific molecules, a negligible response was found, and it did not impact to the specificity of the sensor in the virus detection. This work shows the potential use of PANI NWs in electrochemical immunosensors for label free detection of other pathogens and small biomolecules. 相似文献
16.
A miniaturized immunosensor was developed in connection with disposable screen‐printed carbon strips (SPCS) for the point‐of‐care detection of growth hormone. The performance of the miniaturized system was studied using growth hormone (GH) as the target protein and compared with a conventional electrochemical analyzer. The detection limit of 25 pg/mL was observed for GH in 20 µL sample volume, which indicated that this versatile platform can be easily adapted for decentralized electrochemical immunosensing of clinically important proteins. 相似文献
17.
Yuxue Dai He Li Dan Wu Ru Li Yanfang Zhao Bao Liu Yanyan Cai Minghui Yang Bin Du Qin Wei 《Electroanalysis》2011,23(7):1602-1606
A label‐free electrochemical immunosensor for the sensitive determination of carcinoembryonic antigen (CEA) was fabricated by immobilizing anti‐CEA onto mesoporous alumina (meso‐Al2O3) dispersed in chitosan (0.5 %wt) by the cross‐linking method using glutaraldehyde. Due to its plenty of active sites, meso‐Al2O3 showed high catalysis towards hydroquinone. With the electrocatalytic ability of meso‐Al2O3 for the reduction of hydroquinone, the current signal of the antigen‐antibody reaction was amplified and the enhanced sensitivity was achieved. The current decreased linearly with CEA concentration in the range of 0.04 to 10 ng/mL (26 pg/mL, S/N=3). The immunosensor had good selectivity and wonderful stability. Furthermore it was applied to the analysis of CEA in serum sample with satisfactory results. 相似文献