首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the extension of the previous work by Ciucu and the present authors [M. Ciucu, W.G. Yan, F.J. Zhang, The number of spanning trees of plane graphs with reflective symmetry, J. Combin. Theory Ser. A 112 (2005) 105-116], this paper considers the problem of enumeration of spanning trees of weighted graphs with an involution which allows fixed points. We show that if G is a weighted graph with an involution, then the sum of weights of spanning trees of G can be expressed in terms of the product of the sums of weights of spanning trees of two weighted graphs with a smaller size determined by the involution of G. As applications, we enumerate spanning trees of the almost-complete bipartite graph, the almost-complete graph, the Möbius ladder, and the almost-join of two copies of a graph.  相似文献   

2.
A plane graph is called symmetric if it is invariant under the reflection across some straight line (called symmetry axis). Let G be a symmetric plane graph. We prove that if there is no edge in G intersected by its symmetry axis then the number of spanning trees of G can be expressed in terms of the product of the number of spanning trees of two smaller graphs, each of which has about half the number of vertices of G.  相似文献   

3.
4.
A connected graph is said to be unoriented Laplacian maximizing if the spectral radius of its unoriented Laplacian matrix attains the maximum among all connected graphs with the same number of vertices and the same number of edges. A graph is said to be threshold (maximal) if its degree sequence is not majorized by the degree sequence of any other graph (and, in addition, the graph is connected). It is proved that an unoriented Laplacian maximizing graph is maximal and also that there are precisely two unoriented Laplacian maximizing graphs of a given order and with nullity 3. Our treatment depends on the following known characterization: a graph G is threshold (maximal) if and only if for every pair of vertices u,v of G, the sets N(u)?{v},N(v)?{u}, where N(u) denotes the neighbor set of u in G, are comparable with respect to the inclusion relation (and, in addition, the graph is connected). A conjecture about graphs that maximize the unoriented Laplacian matrix among all graphs with the same number of vertices and the same number of edges is also posed.  相似文献   

5.
A graph G is said to be hyper-connected if the removal of every minimum cut creates exactly two connected components, one of which is an isolated vertex. In this paper, we first generalize the concept of hyper-connected graphs to that of semi-hyper-connected graphs: a graph G is called semi-hyper-connected if the removal of every minimum cut of G creates exactly two components. Then we characterize semi-hyper-connected edge transitive graphs.  相似文献   

6.
Given a graph \(G=(V,E,L)\) and a coloring function \(\ell : E \rightarrow L\), that assigns a color to each edge of G from a finite color set L, the rainbow spanning forest problem (RSFP) consists of finding a rainbow spanning forest of G such that the number of components is minimum. A spanning forest is rainbow if all its components (trees) are rainbow. A component whose edges have all different colors is called rainbow component. The RSFP on general graphs is known to be NP-complete. In this paper we use the 3-SAT Problem to prove that the RSFP is NP-complete on trees and we prove that the problem is solvable in polynomial time on paths, cycles and if the optimal solution value is equal to 1. Moreover, we provide an approximation algorithm for the RSFP on trees and we show that it approximates the optimal solution within 2.  相似文献   

7.
The clique graph of a graph G is the graph obtained by taking the cliques of G as vertices, and two vertices are adjacent if and only if the corresponding cliques have a non-empty intersection. A graph is self-clique if it is isomorphic to its clique graph. We give a new characterization of the set of all connected self-clique graphs having all cliques but two of size 2.  相似文献   

8.
The purpose of this paper which is a sequel of “ Boolean planarity characterization of graphs ” [9] is to show the following results.
  1. Both of the problems of testing the planarity of graphs and embedding a planar graph into the plane are equivalent to finding a spanning tree in another graph whose order and size are bounded by a linear function of the order and the size of the original graph, respectively.
  2. The number of topologically non-equivalent planar embeddings of a Hamiltonian planar graphG is τ(G)=2 c(H)?1, wherec (H) is the number of the components of the graphH which is related toG.
  相似文献   

9.
We generalize a theorem of Knuth relating the oriented spanning trees of a directed graph G and its directed line graph LG. The sandpile group is an abelian group associated to a directed graph, whose order is the number of oriented spanning trees rooted at a fixed vertex. In the case when G is regular of degree k, we show that the sandpile group of G is isomorphic to the quotient of the sandpile group of LG by its k-torsion subgroup. As a corollary we compute the sandpile groups of two families of graphs widely studied in computer science, the de Bruijn graphs and Kautz graphs.  相似文献   

10.
A graph H is collapsible if for every subset X ? V(H), H has a spanning connected subgraph whose set of odd-degree vertices is X. In any graph G there is a unique collection of maximal collapsible subgraphs, and when all of them are contracted, the resulting contraction of G is a reduced graph. Interest in reduced graphs arises from the fact [4] that a graph G has a spanning closed trail if and only if its corresponding reduced graph has a spanning closed trail. The concept can also be applied to study hamiltonian line graphs [11] or double cycle covers [8]. In this article, we characterize the reduced graphs of diameter two. As applications, we obtain prior results in [12] and [14], and show that every 2-edge-connected graph with diameter at most two either admits a double cycle cover with three even subgraphs or is isomorphic to the Petersen graph.  相似文献   

11.
A graph is clique-perfect if the cardinality of a maximum clique-independent set equals the cardinality of a minimum clique-transversal, for all its induced subgraphs. A graph G is coordinated if the chromatic number of the clique graph of H equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of cliqueperfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem,W4,bull}-free, two superclasses of triangle-free graphs.  相似文献   

12.
A connected graph G is caterpillar-pure if each spanning tree of G is a caterpillar. The caterpillar-pure graphs are fully characterized. Loosely speaking they are strings or necklaces of so-called pearls, except for a number of small exceptional cases. An upper bound for the number of edges in terms of the order is given for caterpillar-pure graphs, and those which attain the upper bound are characterized.  相似文献   

13.
Fuji Zhang 《Discrete Mathematics》2006,306(13):1415-1423
A graph G is said to be bicritical if G-u-v has a perfect matching for every choice of a pair of points u and v. Bicritical graphs play a central role in decomposition theory of elementary graphs with respect to perfect matchings. As Plummer pointed out many times, the structure of bicritical graphs is far from completely understood. This paper presents a concise structure characterization on bicritical graphs in terms of factor-critical graphs and transversals of hypergraphs. A connected graph G with at least 2k+2 points is said to be k-extendable if it contains a matching of k lines and every such matching is contained in a perfect matching. A structure characterization for k-extendable bipartite graphs is given in a recursive way. Furthermore, this paper presents an O(mn) algorithm for determining the extendability of a bipartite graph G, the maximum integer k such that G is k-extendable, where n is the number of points and m is the number of lines in G.  相似文献   

14.
An H1,{H2}-factor of a graph G is a spanning subgraph of G with exactly one component isomorphic to the graph H1 and all other components (if there are any) isomorphic to the graph H2. We completely characterise the class of connected almost claw-free graphs that have a P7,{P2}-factor, where P7 and P2 denote the paths on seven and two vertices, respectively. We apply this result to parallel knock-out schemes for almost claw-free graphs. These schemes proceed in rounds in each of which each surviving vertex eliminates one of its surviving neighbours. A graph is reducible if such a scheme eliminates every vertex in the graph. Using our characterisation, we are able to classify all reducible almost claw-free graphs, and we can show that every reducible almost claw-free graph is reducible in at most two rounds. This leads to a quadratic time algorithm for determining if an almost claw-free graph is reducible (which is a generalisation and improvement upon the previous strongest result that showed that there was a O(n5.376) time algorithm for claw-free graphs on n vertices).  相似文献   

15.
Total domination critical and stable graphs upon edge removal   总被引:1,自引:0,他引:1  
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge critical if the removal of any arbitrary edge increases the total domination number. On the other hand, a graph is total domination edge stable if the removal of any arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge critical graphs. We also investigate various properties of total domination edge stable graphs.  相似文献   

16.
The cube G3 of a connected graph G is that graph having the same vertex set as G and in which two distinct vertices are adjacent if and only if their distance in G is at most three. A Hamiltonian-connected graph has the property that every two distinct vertices are joined by a Hamiltonian path. A graph G is 1-Hamiltonian-connected if, for every vertex w of G, the graphs G and G?w are Hamiltonian-connected. A characterization of graphs whose cubes are 1-Hamiltonian-connected is presented.  相似文献   

17.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge addition stable if the addition of an arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge addition stable graphs. We determine a sharp upper bound on the total domination number of total domination edge addition stable graphs, and we determine which combinations of order and total domination number are attainable. We finish this work with an investigation of claw-free total domination edge addition stable graphs.  相似文献   

18.
An even factor of a graph is a spanning subgraph of G in which all degrees are even, positive integers. In this paper, we characterize the claw-free graphs having even factors and then prove that the n-iterated line graph Ln(G) of G has an even factor if and only if every end branch of G has length at most n and every odd branch-bond of G has a branch of length at most n+1.  相似文献   

19.
A graph G is said to be semi-hyper-connected if the removal of every minimum cut of G creates exactly two connected components. In this paper, we characterize semi-hyper-connected vertex transitive graphs, in particular Cayley graphs.  相似文献   

20.
A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer [Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98] defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perfect [1,2]-factor FG, i.e. a spanning subgraph such that each component is 1-regular or 2-regular. Here, we characterize all well-covered graphs G satisfying α(G)=α(FG) for some perfect [1,2]-factor FG. This class contains all well-covered graphs G without isolated vertices of order n with α?(n-1)/2, and in particular all very well-covered graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号