首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Femtosecond,picosecond and nanosecond laser ablation of solids   总被引:21,自引:0,他引:21  
Laser ablation of solid targets by 0.2–5000 ps Ti: Sapphire laser pulses is studied. Theoretical models and qualitative explanations of experimental results are presented. Advantages of femtosecond lasers for precise material processing are discussed and demonstrated.  相似文献   

2.
Recent promising methods of nanoparticle fabrication include laser ablation and spark discharge. Despite different experimental conditions, a striking similarity is often observed in the sizes of the obtained particles. To explain this result, we elucidate physical mechanisms involved in the formation of metallic nanoparticles. In particular, we compare supersaturation degree and sizes of critical nucleus obtained under laser ablation conditions with that obtained for spark discharge in air. For this, the dynamics of the expansion of either ablated or eroded products is described by using a three-dimensional blast wave model. Firstly, we consider nanosecond laser ablation in air. In the presence of a background gas, the plume expansion is limited by the gas pressure. Nanoparticles are mostly formed by nucleation and condensation taking place in the supersaturated vapor. Secondly, we investigate nanoparticles formation by spark discharge at atmospheric pressure. After efficient photoionization and streamer expansion, the cathode material suffers erosion and NPs appear. The calculation results allow us to examine the sizes of critical nuclei as function of the experimental parameters and to reveal the conditions favorable for the size reduction and for the increase in the nanoparticle yield.  相似文献   

3.
Acceleration and expulsion of a laser-induced melt layer in laser ablation of polymers is studied based on a combination of a quantitative theoretical modeling of ablation pressure and viscous melt flow with an experimental technique of a precise nanoscale measurement of the resulting surface profile. For two particular examples corresponding to so-called stationary and non-stationary liquid layer flows the following results are obtained: (i) the kinematic viscosity of the laser-induced melt layer on the surface of poly(ethylene terephthalate) at extreme conditions of KrF laser ablation is found for the first time and (ii) a new form of material removal in laser ablation is explained – expulsion of long (up to 1 mm) nanofibers with a radius of about 150–200 nm when a poly(methyl methacrylate) target is irradiated with a single pulse of a KrF excimer laser. PACS 42.62.Cf; 61.80.Ba; 83.80.Ab  相似文献   

4.
Gas suspended single-walled carbon nanotubes (SWCNTs) with single tube diameter smaller than 2 nm and length of longer than 500 nm were generated by simple and continuous system using laser ablation technique under atmospheric conditions. Graphite target containing 0.5 wt%-nickel and 0.5 wt%-cobalt was ablated by Nd:YAG laser in an electrical furnace under atmospheric pressure of nitrogen flow that allowed one step and continuous synthesis of the SWCNTs. Size distribution of the gas suspended SWCNTs aerosol was measured using size-classification by a differential mobility analyzer (DMA) coupled with a condensation particle counter (CPC) used as a detector. Characteristics of SWCNT aerosol generated under the different temperature were also investigated using scanning and transmission electron microscopes and Raman scattering. Mono-mobility SWCNT aerosol with mobility diameter of 100 and 200 nm was successfully prepared after the size separation using a DMA.  相似文献   

5.
To study the solid Cu ablation in vacuum, two different laser sources operating at 1064 and 308 nm wavelength are employed at similar values of laser fluences. The infrared laser is a Q-switched Nd:Yag having 9 ns pulse width (INFN-LNS, Catania), while the ultraviolet one is a XeCl excimer having 20 ns pulse width (INFN-LEA, Lecce). Both experiments produced a narrow angular distribution of the ejected material along the normal to the target surface. The ablation showed a threshold laser power density, of about 7 and 3 J/cm2 at 1064 and 308 nm, respectively, below which the ablation effect was negligible. The laser interaction produces a plasma at the target surface, which expands very fast in the vacuum chamber. Time-of-flight (TOF) measurements of the ion emission indicated an average ion velocity of the order of 4.7×104 and 2.3×104 m/s for the infrared and ultraviolet radiation, respectively. We also estimated approximately the corresponding temperature of the plasma from which ions originated, i.e. about 106 and 105 K for IR and UV wavelength, respectively. A discussion of the analysis of the ablation mechanism is presented. At the used laser power densities the produced Cu ions showed ionisation states between 1+ and 5+ in both cases.  相似文献   

6.
Ultraviolet (UV) laser thresholds for plasma ignition on solid targets predicted from electron-neutral collisional heating are generally much higher than those observed experimentally. This inconsistency was reconciled by Rosen, et al. [2], who showed that excited-state photoionization played a key role in long-pulse UV laser breakdown. Here we develop a related model but with emphasis on pulses of ~10 ns duration. Experimental results are also reported for titanium, copper, silicon, and ferulic acid targets in vacuum, irradiated with combinations of the XeF, KrF, and ArF lasers for comparison with predictions.  相似文献   

7.
8.
This paper describes the results of an experimental and theoretical investigation of the physical origin of the visible continuum emission usually observed in the early stages of nanosecond laser ablation of solid materials. It has been suggested, but not confirmed that the continuum is due to radiative recombination and bremsstrahlung emission. Time and space-resolved emission spectroscopy with an absolutely calibrated spectrometer was used to study the spectral emission in laser ablation of zinc in vacuum at 4.1 J?cm?2 using a 8 ns, 1064 nm laser pulse. By modelling the spectral emission with a spectral synthesis code, it has been shown that the continuum emission is primarily due to bound-bound transitions between strongly Stark broadened energy levels. Similarly, it can be concluded that the optical absorption is primarily due to bound-bound transitions.  相似文献   

9.
纳秒激光烧蚀冲量耦合数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
常浩  金星  陈朝阳 《物理学报》2013,62(19):195203-195203
为研究激光烧蚀靶产生冲量过程和机理, 建立了一个复杂的一维热传导和流体动力学模型. 以空间碎片常见材料Al为例, 用建立的模型数值计算了纳秒脉宽激光烧蚀靶产生的冲量及冲量耦合系数随时间变化情况. 数值结果和已有的实验数据符合的较好. 数值计算表明: 激光脉冲时间内, 靶获得的冲量随时间迅速增加, 在脉冲时间结束后, 冲量变化随时间趋于稳定; 在冲量耦合过程中, 烧蚀等离子体向真空膨胀, 羽流尺度逐渐增大, 同时吸收入射激光能量, 导致激光与靶耦合的能量降低. 关键词: 激光烧蚀 冲量耦合 等离子体  相似文献   

10.
Silver and gold thin films were deposited by pulsed laser ablation in a controlled Ar atmosphere at pressures between 10 and 100 Pa. Different morphologies, ranging from isolated nanoparticle arrays up to nanostructured thin films were observed. Fast imaging of the plasma allowed deducing the expansion dynamics of the ablated plume. Plasma velocity and volume were used together with the measured average ablated mass per pulse as input parameters in a model to estimate the average size of nanoparticles grown in the plume. The nanoparticle size is expected to decrease from 4 nm down to 1 nm with decreasing Ar pressure between 100 and 10 Pa: this was confirmed by transmission electron micrographs which indicate a reduced dispersion of particle size over narrow size ranges. The production of substrates for surface enhanced Raman scattering whose performances critically depend on nanoparticle size, shape, and structure is discussed.  相似文献   

11.
Pulsed laser ablation of Ag and Au targets, immersed in double-distilled water is used to synthesize metallic nanoparticles (NPs). The targets are irradiated for 20 min by laser pulses at different wavelengths—the fundamental and the second harmonic (SHG) (λ = 1064 and 532 nm, respectively) of a Nd:YAG laser system. The ablation process is performed at a repetition rate of 10 Hz and with pulse duration of 15 ns. Two boundary values of the laser fluence for each wavelength under the experimental conditions chosen were used—it varied from several J/cm2 to tens of J/cm2. Only as-prepared samples were measured not later than two hours after fabrication. The NPs shape and size distribution were evaluated from transmission electron microscopy (TEM) images. The suspensions obtained were investigated by optical transmission spectroscopy in the near UV and in the visible region in order to get information about these parameters. Spherical shape of the NPs at the low laser fluence and appearance of aggregation and building of nanowires at the SHG and high laser fluence was seen. Dependence of the mean particle size at the SHG on the laser fluence was established. Comments on the results obtained have been also presented.  相似文献   

12.
13.
The chemical analysis of a laser jet was performed with a combination of laser back mass transfer and X-ray photoelectron spectroscopy (XPS). It was revealed that, as compared to the source material, films deposited from the jet under laser mass transfer in air show increased oxidizability and changed chemical composition.  相似文献   

14.
A computer model to simulate the evolution of parameters describing laser ablation processes was developed. The absorbed laser energy, the heat diffusion, the phase transformations and the shielding effect of the ablated material were taken into account. The temporal development of the ablated volume, pore depth and extension of the melt zone were calculated for single pulses of 500, 100, 20, 5 and 1 ns. Simulations were performed for pulse energies of 50 J and spot diameters of 10 m. From temporal evolution curves of the ablated volumes, the stoppage of the ablation process was evidenced before the end of the processing pulse. Comments with respect to optimal pulse duration (in the ns regime) are also formulated. PACS 81.40.Wx  相似文献   

15.
Plumes generated by ablation of polymer targets using a third-harmonic Nd:YAG laser under different atmospheres (air, N2 and He) were deposited on a H-terminated silicon substrate. The chemical composition and distribution of deposited ablation debris were measured using time-of-flight secondary-ion mass spectrometry. Mass-resolved images show that the size and shape of the plume is dependent on the laser pulse energy and atmosphere in which the plume expanded. In air and nitrogen, plumes are hemispherical with distinct borders. In He they are mushroom-shaped without sharp borders. Since all experiments were carried out at atmospheric pressure, these differences can be related to the reactivity and molecular weight of the gas. Nitrogen-containing compounds (NCCs) and oxygen-containing compounds (OCCs) were found in plumes ablated in air but not in N2 and He environments. We suggest that the formation of NCCs and OCCs is due to the interaction of the hot plume with air, initiating thermal dissociation of O2 and oxygen-assisted dissociation of N2. PACS 52.25.Kn  相似文献   

16.
4 m/s, shows the development of a shock wave in its front, resulting from the interaction between the species released from the target and the background gas. The water vapor slows down this component up to values of about 3×103 m/s following a behavior that can be well described by the dynamics of a spherical shock wave. The low intensity of emission of the second component has not allowed us to analyze its dynamics. The third and slowest component expands at a constant velocity of 5×102 m/s and is constituted by hot particulates leaving the target. Spectra recorded in the shock front have shown the presence of emission lines arising from Ca I, Ca II, P I and some impurities, and two strong emission bands that can be assigned to some sort of calcium oxide. Received: 7 November 1997/Accepted: 17 February 1998  相似文献   

17.
大气压直流氩等离子体射流工作特性研究   总被引:8,自引:0,他引:8       下载免费PDF全文
介绍了一种新型大气压直流双阳极等离子喷枪,并对其电特性参数和发射光谱进行了测量.通过对氩等离子体射流的电信号进行时域和频域分析,研究了载气流量和弧电流的变化对射流脉动的影响,结果表明氩等离子体电弧的伏安特性呈上升趋势,射流脉动属于接管模式,电源特性中的交流分量引起的电压波动是影响氩等离子体射流脉动的主要因素. 通过光谱法测量了氩等离子体射流在弧室内和弧室出口的发射光谱,利用玻尔兹曼曲线斜率法计算了射流的激发温度,根据Ar I谱线的斯塔克展宽得到了射流的电子密度,并对等离子体射流满足局域热力学平衡(LTE) 关键词: 等离子喷枪 射流脉动 激发温度 局域热力学平衡  相似文献   

18.
19.
20.
The experimental data on the generation of metal and semiconductor nanoparticles during their laser ablation in liquids is reviewed. The dependence of the morphology of noble metal nanoparticles on the liquid type and laser parameters is discussed. The data on the kinetics of the formation of alloyed Au-Ag nanoparticles under laser irradiation of a mixture of colloid solutions of individual nanoparticles are presented. The effect of femtosecond laser beam self-action during metal ablation in liquids via the second harmonic generation at Ag nanoclusters is discussed. The data on the generation of core-shell nanoparticles during laser ablation of alloys and in the presence of the chemical interaction of formed nanoparticles with surrounding liquid are presented. It was shown that laser ablation of CdS and ZnSe crystals leads to the formation of quantum dots of these semiconductors in solution. The parameters controlling the properties of nanoparticles during ablation in liquids and possible applications of the method are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号