首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors, Ca0.736?ySi9.6Al2.4O0.8N15.2:0.064 Eu2+, yMn2+, were firstly synthesized by the high temperature solid state reaction method. The effects of doped Eu2+ and Eu2+–Mn2+ concentrations on the photoluminescence properties of the as-prepared phosphors were investigated systematically. Powder X-ray diffraction shows that pure Ca-α-SiAlON phase is synthesized after sintering at 1700 °C for 2 h under 0.5 MPa N2 atmosphere. The excitation spectra of Eu2+-doped Ca-α-SiAlON phosphors are characterized by two dominant bands centered at 286 nm and 395 nm, respectively. The photoluminescent spectrum of Eu2+-doped Ca-α-SiAlON phosphor exhibits an intense emission band centered at 580 nm due to the allowed 4f 65d→4f 7 transition of Eu2+, showing that the phosphor is a good candidate for creating white light when coupled to a blue LED chip. The intensities of both excitation and emission spectra monotonously decrease with the increment of codoped Mn2+ content (i.e. y value), indicating that energy transfer between Eu2+ and Mn2+ is inefficient in the case of Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors.  相似文献   

3.
The novel red-emitting phosphors K2Ba1−x (MoO4)2: xEu3+(0.02≤x≤0.15) phosphors were prepared by solid-state reaction and their crystal structures, photo luminescent characteristics were investigated. The results show that all samples can be efficiently excited by UV (396 nm) and blue (466 nm) light, which are coupled well with the characteristic emission from UVLED and blue LED, respectively. Their emission spectra show intense red emission at 616 nm with line spectra due to the 5D07F2 transition of Eu3+. The XRD and photoluminescence experimental results indicate that the K2Ba(MoO4)2: Eu3+ phosphor crystallization optimum annealing temperature occurs at about 800°C. The optimum doping concentration of Eu3+ is 0.10 mol, and the critical transfer distance (Rc) among Eu3+ ions is calculated to be about 11.126 ?. The approach to charge compensation was used: Ba2+→Eu3++X (X=F, Cl, Br), and the charge compensation influence on the luminescent intensity of phosphors is investigated.  相似文献   

4.
A series of Eu3+–Sm3+ co-doped CaWO4 phosphors were synthesized by the high temperature solid-state method. The crystal structure of the obtained samples was identified by XRD, and the results showed that all the phases were indexed to scheelite structure. The effect of the doping concentration of Sm3+ on the luminescent properties of the obtained products was investigated, and the optimal Sm3+ concentration was experimentally determined to 0.5%. The photoluminescence properties indicate that there is an efficient energy transfers from Sm3+ to Eu3+. The energy-transfer process between Sm3+ and Eu3+ was also given. Red long afterglow originating from the 5D07FJ (J=0, 1, 2, 3, 4) transitions of Eu3+ was observed after samples were excited by 254 nm, and the duration of the optimal sample can last more than 35 min in dark with naked eyes. The proposed explanation for the afterglow property was also discussed.  相似文献   

5.
Cu–Ag core–shell particles were fabricated from Cu particles and silver sulphate with the environmental-friendly TA (tartaric acid, C4H6O6) as reducing and chelating agent in an aqueous system. The influences of [TA]/[Ag] and [Ag]/[Cu] molar ratios on the formation of Ag coatings on the Cu particles were investigated. The SEM images and SEM–EDS analyses showed that [TA]/[Ag] = 0.5 and [Ag]/[Cu] ≥0.2, the Cu particles were coated with uniform Ag nanoparticles. XRD analyses revealed that for these Cu–Ag particles heated at 250 °C, the oxidation of Cu was significantly reduced. Both anti-Staphylococcus aureus (Gram-positive) and anti-Escherichia coli (Gram-negative) characteristics of this Cu–Ag composite particles showed satisfactory antibacterial ability. The characteristics of the composite Cu–Ag particles were discussed in detail.  相似文献   

6.
Hexagonal YPO4 phosphors doped with Eu3+/Dy3+ and co-doped with Ce3+ were synthesized by a hydrothermal route assisted using lauric acid as a capping agent. The prepared phosphors were characterized by transmission electron microscopy, infrared spectroscopy, powder X-ray diffraction and photoluminescence spectra. YPO4: Eu3+ gives two red emission peaks at 587 and 610?nm corresponding to 5D07F1 and 5D07F2 transitions, respectively. YPO4: Dy3+ exhibits two emission peaks at 485?nm (blue) and 575?nm (yellow) corresponding to 4F9/26H15/2 and 4F9/26H13/2 transitions, respectively. Ce3+ ions enhanced the emission intensity as a co-dopant in both phosphors. Moreover, the effect of γ-radiation in the dose range 5–300?kGy on the photoluminescence behaviour of YPO4:Eu3+,Ce3+ and YPO4:Dy3+,Ce3+ was also investigated. Quenching of emission intensity, after irradiation at 5 and 300?kGy, was observed in both the phosphors due to loss of excess energy through a non-radiative relaxation process.  相似文献   

7.
Dy3+-doped monoclinic NaYFPO4 phosphor has been synthesized by solid-state reaction technique. Its photoluminescence in the vacuum ultraviolet (VUV)-visible region was investigated. The most intensity broadband emission centered at about 171 nm was the host-related absorption. Another broadband at 153 nm could be related to the O2→Dy3+ charge transfer band (CTB) absorption. The excitation peaks located at 178 nm and 256 nm were the spin-allowed (SA) and spin-forbidden (SF) fd transitions of Dy3+, respectively. Some sharp lines in the range of 280–500 nm were due to the ff transitions of Dy3+ within its 4f9 configuration. Under the VUV–vis excitation, the Dy3+-doped NaYFPO4 phosphor showed the characteristic emissions of Dy3+ (4F9/26H15/2 transitions and 4F9/26H13/2 transitions) with a stronger blue emission peaking at about 485 nm. All the chromaticity coordinates of the sample were in the near cold-white region. It can be predicted that this phosphor can be applied in both mercury-free luminescence lamps and white LED.  相似文献   

8.
Physics of the Solid State - Three-phase (corundum + δ phase + amorphous phase) amorphous–nanocrystalline powders of pure and carbon-doped Al2O3 (x C = 1.07–6.6 wt %) have been...  相似文献   

9.
Ternary molybdate NaCaGd1−x(MoO4)3:Er3+/Yb3+ phosphors with the proper doping concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+ = 0, 0.05, 0.1, 0.2 and Yb3+ = 0, 0.2, 0.45) were successfully synthesized by microwave sol–gel method for the first time. Well-crystallized particles formed after heat-treatment at 900 °C for 16 h showed a fine and homogeneous morphology with particle sizes of 3–5 μm. The optical properties were examined comparatively using photoluminescence emission and Raman spectroscopy. Under excitation at 980 nm, the doped particles exhibited a strong 525-nm emission band, a weak 550-nm emission band in the green region, which correspond to the 2H11/2  4I15/2 and 4S3/2  4I15/2 transitions, and a very weak 655-nm emission band in the red region, which corresponds to the 4F9/2  4I15/2 transition. The optimal Yb3+:Er3+ ratio was obtained to be 9:1, as indicated by the composition-dependent quenching effect of Er3+ ions. The pump power dependence of upconversion emission intensity and Commission Internationale de L’Eclairage chromaticity coordinates of the phosphors were evaluated in detail.  相似文献   

10.
11.
In this research, we report on the characterization of La1?xTbxMn0.9Zn0.1O3+d (LTMZ) (0.0≤x≤0.32). Nanoparticles with high surface area were synthesized by the polymerized complex method based on the Pechini-type reaction. High-quality nanopowders with controlled stochiometry and microstructure were prepared in the temperature range of 700–800 °C for 6 h, with mean particle sizes of approximately 18.35 nm.

The synthesized materials were characterized by X-ray powder diffraction, fourier transform infrared spectrometry and photoluminescence (PL). PL measurements showed the characteristic green emission of Tb3+ ions in crystalline LTMZ powders due to the 5D 47F J transitions of the 4f electrons of Tb3+ ions. The structure, homogeneity and particle size of the obtained compounds during different stages were investigated by scanning electron microscopy.  相似文献   

12.
Spectral-kinetics properties of photo-scintillation excited with single light pulses of a nitrogen laser (λ=337.1 nm, t1/2=5 ns, Q=1 mJ) have been studied in CsI:Eu crystals at temperature within 80–300 K. It is found that the exponential decay of 463 nm emission band has a time constant which grows from 0.85 μs at 78 K to 1.6 μs at 380 K. Such an anomalous temperature behavior of 463 nm emission decay kinetics is discussed in terms of the crystal thermal expansion. It has been proposed that 463 nm emission is caused by a cluster center consisting of three dipoles Eu2+vc? bounded with each other in a hexagon. Owing to the exchange resonance in the cluster, the energy passes from an excited dipole to a non-excited one and the distance between them gets longer due to thermal expansion of the crystal.  相似文献   

13.
The red emitting Cr3+ activated α-Al2O3 powder phosphor has been prepared by easy combustion reactions from mixed metal nitrate reactants and urea with ignition temperatures of 500 °C. The as-synthesized powder was characterized by X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared techniques. The X-ray diffraction pattern reveals that the phosphor crystallized in the hexagonal α-Al2O3 phase directly from the combustion reaction. The EPR spectrum exhibits an intense resonance signal with effective g value at g=3.33 along with a few weak resonance signals with effective g values at g=13.7, 2.34, 1.95, 1.49, and 1.26. The spin concentration (N) and its paramagnetic susceptibility (χ) have been evaluated. The excitation spectrum consists of two broad intense bands at 415 nm and 555 nm and are assigned to 4A2g (F)→4T1g (F) and 4A2g (F)→4T2g (F) transitions, respectively. The intense fluorescence peak around 691 nm is attributed to 2E g 4A2g transition of Cr3+ ion. By correlating EPR and optical data, the crystal field splitting parameter (Dq), Racah inter-electronic repulsion parameter (B) have been evaluated and discussed. The EPR and optical studies reveal that Cr3+ ions are occupying in Al3+ sites in octahedral coordination.  相似文献   

14.
SiO2-coated Ca2BO3Cl:Eu2+ phosphors were prepared by the sol–gel method in order to enhance the chemical and thermal stabilities of Ca2BO3Cl:Eu2+ phosphor. The phase structures, microstructures and luminescence properties were studied by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrometer, respectively. The emission intensity of SiO2-coated Ca2BO3Cl:Eu2+ phosphor decreased a little compared to that of the uncoated phosphor. The moisture resistances of the phosphors were comparatively examined by the aging treatment experiment in the water, and the thermal stability was studied by the temperature dependent photoluminescence spectra. The results indicated that SiO2 coating on the surface of the phosphor particles improved the moisture-resistance and thermal stability to a large extent.  相似文献   

15.
Monovalent ions Li+, Na+, and K+, as charge compensators, are introduced into CaYA1307: M (M = Eu3+, Ce~+) in this letter. Their crystal phases and photoluminescence properties of different alkali metal ions doped in CaYA1307 are investigated. In addition, the influence of charge compensation ion Li+ which has a more obvious role in improving luminescence intensity on CaYA1307: Eu3+ phosphor is intentionally discussed in detail and a possible mechanism of charge compensation is given. The enhancement of red emission centered at 618 nm belonging to Eu3+ is achieved by adding alkali metal ion Li+ under 393-nm excitation.  相似文献   

16.
Up-conversion and optical storage properties of SrS: Eu, Sm in PMMA   总被引:2,自引:0,他引:2  
An erasable and rewritable optical-storage material SrS: Eu,Sm synthesized. Optical emission and excitation spectra of this material were measured. Using the SrS: Eu, Sm-PMMA film, the image-recording experiment was performed.  相似文献   

17.
18.
An aqueous solution of AgNO3 in the presence of ammonia and Fe(CO)5 is sonicated under a H2/Ar mixture, yielding a nanostructured homogeneous phase of Ag/Fe2O3. This composite material is further reduced at 300°C under hydrogen to produce the nanophased Fe/Ag solid mixture. The as-prepared material, as well as the reduced mixture, is analyzed by various conventional methods. Magnetization loops, ESR, Mössbauer, and magnetoresistance measurements are also conducted to determine the magnetic properties of the products.  相似文献   

19.
ABSTRACT

The calcium-substituted barium titanate nanopowders Ba1?xCaxTiO3 (0.2 ≤ x ≤ 0.3) have been obtained at room temperature by mechanochemical synthesis. The formation of the perovskite phase was controlled by X-ray diffraction studies at various milling duration. The powders possess the perovskite crystallographic structure directly after milling longer than 10 h. The dielectric properties of the ceramics obtained by sintering of the nanopowders were investigated in the temperature range between 300 and 500 K. The temperature dependence of permittivity exhibited a single anomaly, which corresponds to the ferroelectric–paraelectric phase transition.  相似文献   

20.
Y2O3–H3BO3:Eu3+ powders were synthesized by the mechanical alloying (MA) method, and their structural and photoluminescent characteristics were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermogravimetric/differential thermal analysis (TG/DTA), and luminescence spectrophotometer. The crystallite size of the powder mixture milling for 30 minutes (min) by the Willaimson–Hall method was approximately 58.8 nm with strain of 0.00141; overall, the internal strain increased with the milling time (tm). The morphology of the powder mixture with tm, as observed by SEM, divided into three different stages: agglomeration (0 < tm ≤ 30 min), disintegration (30min < tm ≤ 120 min), and homogenization (120min < tm ≤ 300 min). The transition temperature and the weight reduction rate of the sample powders were 645.58 °C and 2.851%, respectively. Furthermore, the photoluminescence of the powder mixture excited to 240 nm by a zenon discharge lamp (20 kW) was detected near 592 nm(5Do → 7F1), 613 nm, 628  (5Do → 7F2), and 650 nm (5Do → 7F3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号