首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polarized spectroscopic properties related to 1.07 μm laser operation of a 1.8 at.% Nd3+:LaBO2MoO4 crystal grown by the Czochralski method were investigated at room temperature. Using a 2.2-mm-thick, Z-cut Nd3+:LaBO2MoO4 crystal as gain medium, orthogonally polarized dual-wavelength laser at 1,068 and 1,074 nm was first realized in a plano-concave resonator end-pumped by a quasi-continuous-wave 795 nm diode laser. A total output peak power of 1.2 W with slope efficiency of 26 % around 1.07 μm was obtained. The influences of resonator length and pump power on output laser wavelength were also investigated.  相似文献   

2.
An eye-safe Raman laser is realized with BaTeMo2O9 (BTM) nonlinear crystal for the first time. By using a diode-end-pumped acousto-optically Q-switched Nd:YVO4 laser as the pumping source, the BTM crystal converts the fundamental laser at 1,342 nm to first-Stokes laser at 1,531 nm successfully. With an incident power of 10.8 W and a pulse repetition rate of 25 kHz, the average output power at 1,531 nm is obtained to be 0.83 W, corresponding to a diode-to-Stokes conversion efficiency of 7.7 %. The pulse width is 11 ns, and the peak power is 3.0 kW.  相似文献   

3.
We report on the design and development of a new type of near-IR laser source. The source comprises of an optical parametric generator (OPG) and a second harmonic generator (SHG) pumped by an 80-MHz, 1064-nm, 7-ps Nd:YVO4 laser. The OPG is self-seeded with a fraction of its own signal output, which significantly enhances its conversion efficiency. The SHG doubles the frequency of OPG signal to produce a coherent output. The final output beam has a tunable wavelength near 800 nm, an average power of over 1 W, and a pulse duration around 5 ps. The M2-factor of the output beam can reach 1.1 after spatial filtering. With the new laser source, we have successfully demonstrated coherent anti-Stokes Raman scattering microscopy on 1 μm polystyrene beads, which shows that it has the potential to be a substitute for a picosecond optical parametric oscillator in certain microscopy or spectroscopy applications.  相似文献   

4.
We have successfully observed high-resolution spectra of spin-forbidden electric quadrupole transition (1 S 03 D 2) in ytterbium (174Yb) atoms. The differential light shifts between the 1 S 0 and the 3 D 2 states in a far-off resonant trap at 532 nm are also measured. For the spectroscopy, we developed simple, narrow-linewidth, and long-term frequency stabilized violet diode laser systems. Long-term drifts of the excitation laser (404 nm) is suppressed by locking the laser to a length stabilized optical cavity. The optical path length of the cavity is stabilized to another diode laser whose frequency is locked to a strong 1 S 01 P 1 transition (399 nm) of Yb. Both lasers are standard extended-cavity diode lasers (ECDLs) in the Littrow configuration. Since the linewidth of a violet ECDL (~10 MHz) is broader than a typical value of a red or near infra-red ECDL (<1 MHz), we employ optical feedback from a narrow-band Fabry–Perot cavity to reduce the linewidth. The linewidth is expected to be <20 kHz for 1 ms averaging time, and the long-term frequency stability is estimated to be ~200 kHz/h.  相似文献   

5.
We report on diode-pumped laser operation of Pr3+,Mg2+:SrAl12O19 at lasing wavelengths of λ L = 724.4 nm, λ L = 643.5 nm, and λ L = 622.8 nm. Furthermore, the laser threshold could be reached in the green spectral range. By pumping the crystal longitudinally from each side with two polarization beam combined InGaN laser diodes, a total pump power of ≈4 W was available. In the deep red spectral range, a maximum output power of 564 mW was achieved with a maximum slope efficiency of 50 % with respect to the absorbed pump power. The maximum possible internal losses were estimated to ≈1 %. Beam quality factors M 2 were in the range of 1.2–1.5.  相似文献   

6.
We present an all-solid-state narrow-linewidth laser source emitting 670 mW output power at 671 nm delivered in a diffraction-limited beam. The source is based on a frequency-doubled diode-end-pumped ring laser operating on the 4 F 3/24 I 13/2 transition in Nd:YVO4. By using periodically poled potassium titanyl phosphate (ppKTP) in an external buildup cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100 GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally, a simplified design based on intra-cavity doubling is described and first results are presented.  相似文献   

7.
Studies into the suitability of a novel, widely tunable telecom L-band (1,563–1,613 nm) digital supermode distributed Bragg reflector (DS-DBR) laser for cavity ring-down spectroscopy (CRDS) are presented. The spectrometer comprised of a 36.6?cm long linear cavity with ring-down times varying between 19–26 μs across the 50 nm DS-DBR wavelength range due to changes in the cavity mirror reflectivities with wavelength. The potential of such a broadband, high-resolution CRD spectrometer was illustrated by investigating several transitions of CO2 in air, a 5 % calibrated mixture and breath samples. Allan variance measurements at a single wavelength indicated an optimal minimum detectable absorption coefficient (α min) of 3 × 10?10 cm?1 over 20 s.  相似文献   

8.
We present a high-efficiency Nd: LiYF4 (Nd:YLF) laser operating at 1321 nm pumped directly into the emitting level, 4F3/2. The linear polarization of the pump diode laser was maintained by a short fiber. At the absorbed pump power of 7.3 W, as high as 3.6 W of continuous-wave output power at 1321 nm is achieved. The slope efficiency with respect to the absorbed pump power was 0.52. To the best of our knowledge, this is the first demonstration of such a laser system. Comparative results obtained for the pump with a diode laser at 806 nm, into the highly absorbing 4F5/2 level, are given in order to prove the advantages of 880 nm wavelength pumping.  相似文献   

9.
In this work we report on new optically pumped THz laser lines from deuterated formic acid (DCOOD). An isotopic 13CO2 laser was used for the first time as a pump source for this molecule, and a Fabry–Perot cavity was used as a THz laser resonator. Optoacoustic absorption spectra were used as a guide to search for new THz laser lines. We could observe six new laser lines in the range from 303.8 μm (0.987 THz) to 725.1 μm (0.413 THz). The lines were characterized according to wavelength, relative polarization, relative intensity, and optimum working pressure. The transferred lamb-dip technique was used to measure the frequency absorption transition for both of these laser lines. Furthermore, we also present a catalogue of all THz laser lines generated from DCOOD.  相似文献   

10.
Laser operation near 1.06 μm by a diode-pumped Nd:(Lu x Gd1?x )3Ga5O12 (Nd:LGGG) disordered crystal has been investigated. Cw oscillation, with a slope efficiency as high as 61% and 230 mW output power, was achieved with 400 mW absorbed power from a 1-W laser diode. Stable passive mode locking with single- or multi-banded spectrum was obtained with a semiconductor saturable absorber mirror (SAM) and a single-prism, dispersion-compensated cavity. Fourier limited pulses with duration ≈3–9 ps and output power ≈40 mW were generated at three well-defined laser transitions in the range 1062–1067 nm.  相似文献   

11.
The continuous-wave high efficiency laser emission of Nd:YVO4 at the fundamental wavelength of 914 nm and its 457 nm second harmonic obtained by intracavity frequency doubling with an LBO nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. 6.5 W at 457 nm with M 2=1.8 was obtained from a 5-mm-thick 0.4 at.% Nd:YVO4 laser medium and a 15-mm-long LBO nonlinear crystal in a Z-type cavity for 18.6 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.35. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing level 4F5/2, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

12.
To clarify the advantages of Cr:Nd:YAG ceramics rods in solar-pumped lasers, a fused silica light guide with rectangular cross-section is coupled to a compound V-shaped cavity within which a 7 mm diameter 0.1 at.% Cr:1.0 at.% Nd:YAG ceramic rod is uniformly pumped. The highly concentrated solar radiation at the focal spot of a 2 m diameter stationary parabolic mirror is transformed into a uniform pump radiation by the light guide. Efficient pump light absorption is achieved by pumping uniformly the ceramic rod within the V-shaped cavity. Optimum pumping parameters and solar laser output powers are found through ZEMAX© non-sequential ray-tracing and LASCAD© laser cavity analysis codes. 33.6 W continuous-wave laser power is measured, corresponding to 1.32 times enhancement over our previous results with a 4 mm diameter Nd:YAG single-crystal rod. High slope efficiency of 2.6 % is also registered. The solar laser output performances of both the ceramic and the single-crystal rods are finally compared, revealing the relative advantage of the Cr:Nd:YAG rod in conversion efficiency. Low scattering coefficient of 0.0018 cm?1 is deduced for the ceramic rod. Heat load is considered as a key factor affecting the ceramic laser output performance.  相似文献   

13.
We report a double z-type folded plane-plane symmetrical cavity diode side pumped solid state yellow-orange laser at 593 nm by using intracavity sum-frequency mixing. By carefully designing the cavity and employing several techniques to increase sum-frequency efficiency, a Q-switched yellow-orange laser source, with an average output power of 8 W, a beam quality factor M 2 = 4.86, and a repetition rate of 8 kHz is developed. In this paper, we first use 1338 and 1064 nm emissions of Nd:YAG crystal to generate 593 nm yellow-orange laser beam by intracavity sum-frequency mixing (SFM).  相似文献   

14.
We present a design for a compact laser-diode-end-pumped Nd:YAP/Cr:YAG q-switched laser in a plano?Cconcave cavity configuration. With an optical-to-optical efficiency of 35%, this laser provides an average output of 1.2 W with 13 mJ at 1080 nm. After that, the laser is frequency doubled by replacing the output coupler with a flat KTP crystal to achieve an output of 8 mJ in 8 ns at 540 nm. At a peak power of 1 MW, the laser emits linearly polarized output with an average power of 800 mW. The calculated M2 value is 1.3, the output is very stable, and the laser operates in the TEM00 mode.  相似文献   

15.
We report an all-solid-state tunable CW orange laser based on single-pass sum-frequency generation in step-chirped PPMgO: LN crystal. Two laser sources, a tunable laser (1550 nm) and an ASE laser (1525–1650 nm) are used interchangeably as pumps and mixed with a fixed 975 nm signal laser. Up to 4.3 mW at 597 nm is generated corresponding to 0.87% nonlinear conversion efficiency and the beam quality (M2) value of about 2.5 is measured. The output wavelength can be tuned up to?~?5.66 nm by varying the position of focusing inside the crystal and by temperature, which makes possible the practical application of our device for wavelength selection and diversity in the orange spectral range.  相似文献   

16.
We have developed a Nd:YVO4 thin-disk laser at 914 nm with single-frequency operation and active frequency stabilization to a low-finesse reference cavity. The spectral density of laser frequency noise is analysed by means of noise measurements at the error point of the frequency control loop. To address the 31S0→33P1 magnesium intercombination line at 457 nm, we use an external frequency doubling stage based on periodically poled KTiOPO4 for the generation of more than 150-mW output power at 457 nm. Optical beat signal measurements at 457 nm with a frequency-stable dye laser show a short-time line width of the thin-disk laser of less than 100 kHz. PACS 42.55.Xi; 42.60.Lh; 42.62.Fi; 42.65.Ky  相似文献   

17.
A bulk crystal of Yb:Sc2SiO5 (Yb:SSO) with favorable thermal properties was successfully obtained by the Czochralski method. The energy level diagrams for Yb:SSO crystal were determined by optical spectroscopic analysis and semi-empirical crystal-field calculations using the simple overlap model. The full width at half maximum of the absorption band centering at 976 nm was calculated to be 24 nm with a peak absorption cross-section of 9.2×10-21 cm2. The largest ground-state splitting of Yb3+ ions is up to 1027 cm-1 in a SSO crystal host. Efficient diode-pumped laser performance of Yb:SSO was primarily demonstrated with a slope efficiency of 45% and output power of 3.55 W.  相似文献   

18.
We present the strict design parameters of the experiment for the 780 nm tunable continuous-wave second harmonic (SH) generation by the nonlinear resonator containing a MgO doped periodically poled LiNbO3 (MgO:PPLN) crystal. Optimization of such critical parameters, including focusing and impedance matching, more than 84% SH conversion efficiency and 3.1 W available output power at 780 nm were obtained from the fundamental wave at 1560 nm with two different input couplers. The thermal saturated behavior of the SH output power has been observed in the experiment. The beam quality factor M2 of the generated SH wave is 1.04 (1.03), and the RMS power stability is 1.29% in 3 h. The SH wave was further used to detect the D 2 transitions of Rb atom, exhibiting a fine tunable characteristic. Such laser source can be a suitable candidate in the atomic physics and quantum optics.  相似文献   

19.
We present a diode-side-pumped Q-switched mode-locked (QML) laser operating at 532 nm for the first time employing a composite crystal Nd:YAG/Cr4+:YAG/YAG and a KTP. The experimental results show that, using a suitable cavity and crystals, one can obtain high-quality QML laser output at 532 nm with a side-pumped system. We measure and analyze the QML performance of the fundamental frequency laser and the green laser. Under a pump power of 127 W, we obtain a QML laser operating at 532 nm with an average power of 4.97 W and a repetition rate of 0.2 GHz for the mode-locked pulses; the corresponding depth of modulation is close to 100%.  相似文献   

20.
By using a doubly passively Q-switched Nd:Gd3Ga5O12(Nd:GGG) laser with Cr4+:YAG and GaAs as saturable absorbers as pump laser, simultaneous intracavity optical parametric oscillation and stimulated Raman scattering based on a single X-cut KTiOPO4 (KTP) crystal have been realized. Under an incident diode pump power of 10.5 W, the output powers at the signal wave near 1,569 nm and the first Stokes emission near 1,094 nm were 218 and 72 mW, corresponding to the optical-to-optical conversion efficiencies of 2.08 and 0.69 %, respectively. The measured shortest pulse duration at the signal wave near 1,569 nm was 580 ps, generating a pulse peak power of 43.7 kW, while the minimum pulse duration at the first Stokes emission near 1,094 nm was 1.61 ns. By adjusting the tilt angle of the KTP crystal, up to the third Stokes scattering was also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号