首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a global optimization method for solving nonconvex mixed integer nonlinear programming (MINLP) problems. A convex overestimation of the feasible region is obtained by replacing the nonconvex constraint functions with convex underestimators. For signomial functions single-variable power and exponential transformations are used to obtain the convex underestimators. For more general nonconvex functions two versions of the so-called αBB-underestimator, valid for twice-differentiable functions, are integrated in the actual reformulation framework. However, in contrast to what is done in branch-and-bound type algorithms, no direct branching is performed in the actual algorithm. Instead a piecewise convex reformulation is used to convexify the entire problem in an extended variable-space, and the reformulated problem is then solved by a convex MINLP solver. As the piecewise linear approximations are made finer, the solution to the convexified and overestimated problem will form a converging sequence towards a global optimal solution. The result is an easily-implementable algorithm for solving a very general class of optimization problems.  相似文献   

2.
Mixed-integer nonlinear programming (MINLP) problems involving general constraints and objective functions with continuous and integer variables occur frequently in engineering design, chemical process industry and management. Although many optimization approaches have been developed for MINLP problems, these methods can only handle signomial terms with positive variables or find a local solution. Therefore, this study proposes a novel method for solving a signomial MINLP problem with free variables to obtain a global optimal solution. The signomial MINLP problem is first transformed into another one containing only positive variables. Then the transformed problem is reformulated as a convex mixed-integer program by the convexification strategies and piecewise linearization techniques. A global optimum of the signomial MINLP problem can finally be found within the tolerable error. Numerical examples are also presented to demonstrate the effectiveness of the proposed method.  相似文献   

3.
A new deterministic algorithm for solving convex mixed-integer nonlinear programming (MINLP) problems is presented in this paper: The extended supporting hyperplane (ESH) algorithm uses supporting hyperplanes to generate a tight overestimated polyhedral set of the feasible set defined by linear and nonlinear constraints. A sequence of linear or quadratic integer-relaxed subproblems are first solved to rapidly generate a tight linear relaxation of the original MINLP problem. After an initial overestimated set has been obtained the algorithm solves a sequence of mixed-integer linear programming or mixed-integer quadratic programming subproblems and refines the overestimated set by generating more supporting hyperplanes in each iteration. Compared to the extended cutting plane algorithm ESH generates a tighter overestimated set and unlike outer approximation the generation point for the supporting hyperplanes is found by a simple line search procedure. In this paper it is proven that the ESH algorithm converges to a global optimum for convex MINLP problems. The ESH algorithm is implemented as the supporting hyperplane optimization toolkit (SHOT) solver, and an extensive numerical comparison of its performance against other state-of-the-art MINLP solvers is presented.  相似文献   

4.
This paper considers the solution of Mixed Integer Nonlinear Programming (MINLP) problems. Classical methods for the solution of MINLP problems decompose the problem by separating the nonlinear part from the integer part. This approach is largely due to the existence of packaged software for solving Nonlinear Programming (NLP) and Mixed Integer Linear Programming problems.In contrast, an integrated approach to solving MINLP problems is considered here. This new algorithm is based on branch-and-bound, but does not require the NLP problem at each node to be solved to optimality. Instead, branching is allowed after each iteration of the NLP solver. In this way, the nonlinear part of the MINLP problem is solved whilst searching the tree. The nonlinear solver that is considered in this paper is a Sequential Quadratic Programming solver.A numerical comparison of the new method with nonlinear branch-and-bound is presented and a factor of up to 3 improvement over branch-and-bound is observed.  相似文献   

5.
A class of nonconvex minimization problems can be classified as hidden convex minimization problems. A nonconvex minimization problem is called a hidden convex minimization problem if there exists an equivalent transformation such that the equivalent transformation of it is a convex minimization problem. Sufficient conditions that are independent of transformations are derived in this paper for identifying such a class of seemingly nonconvex minimization problems that are equivalent to convex minimization problems. Thus, a global optimality can be achieved for this class of hidden convex optimization problems by using local search methods. The results presented in this paper extend the reach of convex minimization by identifying its equivalent with a nonconvex representation.  相似文献   

6.
In this work, we combine outer-approximation (OA) and bundle method algorithms for dealing with mixed-integer non-linear programming (MINLP) problems with nonsmooth convex objective and constraint functions. As the convergence analysis of OA methods relies strongly on the differentiability of the involved functions, OA algorithms may fail to solve general nonsmooth convex MINLP problems. In order to obtain OA algorithms that are convergent regardless the structure of the convex functions, we solve the underlying OA’s non-linear subproblems by a specialized bundle method that provides necessary information to cut off previously visited (non-optimal) integer points. This property is crucial for proving (finite) convergence of OA algorithms. We illustrate the numerical performance of the given proposal on a class of hybrid robust and chance-constrained problems that involve a random variable with finite support.  相似文献   

7.
Generalized Disjunctive Programming (GDP) has been introduced recently as an alternative to mixed-integer programming for representing discrete/continuous optimization problems. The basic idea of GDP consists of representing these problems in terms of sets of disjunctions in the continuous space, and logic propositions in terms of Boolean variables. In this paper we consider GDP problems involving convex nonlinear inequalities in the disjunctions. Based on the work by Stubbs and Mehrotra [21] and Ceria and Soares [6], we propose a convex nonlinear relaxation of the nonlinear convex GDP problem that relies on the convex hull of each of the disjunctions that is obtained by variable disaggregation and reformulation of the inequalities. The proposed nonlinear relaxation is used to formulate the GDP problem as a Mixed-Integer Nonlinear Programming (MINLP) problem that is shown to be tighter than the conventional big-M formulation. A disjunctive branch and bound method is also presented, and numerical results are given for a set of test problems.  相似文献   

8.
In the literature, methods for the construction of piecewise linear upper and lower bounds for the approximation of univariate convex functions have been proposed. We study the effect of the use of transformations on the approximation of univariate (convex) functions. In this paper, we show that these transformations can be used to construct upper and lower bounds for nonconvex functions. Moreover, we show that by using such transformations of the input variable or the output variable, we obtain tighter upper and lower bounds for the approximation of convex functions than without these approximations. We show that these transformations can be applied to the approximation of a (convex) Pareto curve that is associated with a (convex) bi-objective optimization problem.  相似文献   

9.
Graph transformations proved useful for many algorithmic problems. In the present paper, we study this tool with respect to the maximum stable set problem. We first review available results on this topic and then propose an approach to uniformly describe and systematically develop graph transformations that do not change the size of a maximum stable set in the graph. The approach is illustrated by a number of new transformations.  相似文献   

10.
In this article, we aim to extend the firefly algorithm (FA) to solve bound constrained mixed-integer nonlinear programming (MINLP) problems. An exact penalty continuous formulation of the MINLP problem is used. The continuous penalty problem comes out by relaxing the integrality constraints and by adding a penalty term to the objective function that aims to penalize integrality constraint violation. Two penalty terms are proposed, one is based on the hyperbolic tangent function and the other on the inverse hyperbolic sine function. We prove that both penalties can be used to define the continuous penalty problem, in the sense that it is equivalent to the MINLP problem. The solutions of the penalty problem are obtained using a variant of the metaheuristic FA for global optimization. Numerical experiments are given on a set of benchmark problems aiming to analyze the quality of the obtained solutions and the convergence speed. We show that the firefly penalty-based algorithm compares favourably with the penalty algorithm when the deterministic DIRECT or the simulated annealing solvers are invoked, in terms of convergence speed.  相似文献   

11.
Nonconvex programming problems are frequently encountered in engineering and operations research. A large variety of global optimization algorithms have been proposed for the various classes of programming problems. A new approach for global optimum search is presented in this paper which involves a decomposition of the variable set into two sets —complicating and noncomplicating variables. This results in a decomposition of the constraint set leading to two subproblems. The decomposition of the original problem induces special structure in the resulting subproblems and a series of these subproblems are then solved, using the Generalized Benders' Decomposition technique, to determine the optimal solution. The key idea is to combine a judicious selection of the complicating variables with suitable transformations leading to subproblems which can attain their respective global solutions at each iteration. Mathematical properties of the proposed approach are presented. Even though the proposed approach cannot guarantee the determination of the global optimum, computational experience on a number of nonconvex QP, NLP and MINLP example problems indicates that a global optimum solution can be obtained from various starting points.  相似文献   

12.
We propose a decomposition algorithm for a special class of nonconvex mixed integer nonlinear programming problems which have an assignment constraint. If the assignment decisions are decoupled from the remaining constraints of the optimization problem, we propose to use a column enumeration approach. The master problem is a partitioning problem whose objective function coefficients are computed via subproblems. These problems can be linear, mixed integer linear, (non-)convex nonlinear, or mixed integer nonlinear. However, the important property of the subproblems is that we can compute their exact global optimum quickly. The proposed technique will be illustrated solving a cutting problem with optimum nonlinear programming subproblems.  相似文献   

13.
This article presents for the first time an algorithm specifically designed for globally minimizing a finite, convex function over the weakly efficient set of a multiple objective nonlinear programming problem (V1) that has both nonlinear objective functions and a convex, nonpolyhedral feasible region. The algorithm uses a branch and bound search in the outcome space of problem (V1), rather than in the decision space of the problem, to find a global optimal solution. Since the dimension of the outcome space is usually much smaller than the dimension of the decision space, often by one or more orders of magnitude, this approach can be expected to considerably shorten the search. In addition, the algorithm can be easily modified to obtain an approximate global optimal weakly efficient solution after a finite number of iterations. Furthermore, all of the subproblems that the algorithm must solve can be easily solved, since they are all convex programming problems. The key, and sometimes quite interesting, convergence properties of the algorithm are proven, and an example problem is solved.  相似文献   

14.
This paper introduces a new approach to robust model predictive control (MPC) based on conservative approximations to semi-infinite optimization using linear matrix inequalities (LMIs). The method applies to problems with convex quadratic costs, linear and convex quadratic constraints, and linear predictive models with bounded uncertainty. If the MPC optimization problem is feasible at the initial control step (the first application of the MPC optimization), it is shown that the MPC optimization problems will be feasible at all future time steps and that the controlled system will be closed-loop stable. The method is illustrated with a solenoid control example. The authors thank the anonymous reviewers for suggestions that improved the presentation of this work. The work was supported in part by the EPRI/DoD Complex Interactive Networks/Systems Initiative under Contract EPRI-W08333-05 and by the US Army Research Office Contract DAAD19-01-1-0485.  相似文献   

15.
This paper aims to solve a class of CEC benchmark constrained optimization problems that have been widely studied by nature-inspired optimization algorithms. Based on canonical duality theory, these challenging problems can be reformulated as a unified canonical dual problem over a convex set, which can be solved deterministically to obtain global optimal solutions in polynomial time. Applications are illustrated by some well-known CEC benchmark problems, and comparisons with other methods have demonstrated the effectiveness of the proposed approach.  相似文献   

16.
This paper considers a new class of stochastic resource allocation problems that requires simultaneously determining the customers that a capacitated resource must serve and the stock levels of multiple items that may be used in meeting these customers’ demands. Our model considers a reward (revenue) for serving each assigned customer, a variable cost for allocating each item to the resource, and a shortage cost for each unit of unsatisfied customer demand in a single-period context. The model maximizes the expected profit resulting from the assignment of customers and items to the resource while obeying the resource capacity constraint. We provide an exact solution method for this mixed integer nonlinear optimization problem using a Generalized Benders Decomposition approach. This decomposition approach uses Lagrangian relaxation to solve a constrained multi-item newsvendor subproblem and uses CPLEX to solve a mixed-integer linear master problem. We generate Benders cuts for the master problem by obtaining a series of subgradients of the subproblem’s convex objective function. In addition, we present a family of heuristic solution approaches and compare our methods with several MINLP (Mixed-Integer Nonlinear Programming) commercial solvers in order to benchmark their efficiency and quality.  相似文献   

17.
The strictly convex quadratic programming problem is transformed to the least distance problem — finding the solution of minimum norm to the system of linear inequalities. This problem is equivalent to the linear least squares problem on the positive orthant. It is solved using orthogonal transformations, which are memorized as products. Like in the revised simplex method, an auxiliary matrix is used for computations. Compared to the modified-simplex type methods, the presented dual algorithm QPLS requires less storage and solves ill-conditioned problems more precisely. The algorithm is illustrated by some difficult problems.   相似文献   

18.
This paper addresses itself to the algorithm for minimizing the sum of a convex function and a product of two linear functions over a polytope. It is shown that this nonconvex minimization problem can be solved by solving a sequence of convex programming problems. The basic idea of this algorithm is to embed the original problem into a problem in higher dimension and apply a parametric programming (path following) approach. Also it is shown that the same idea can be applied to a generalized linear fractional programming problem whose objective function is the sum of a convex function and a linear fractional function.  相似文献   

19.
We are interested in structures and efficient methods for mixed-integer nonlinear programs (MINLP) that arise from a first discretize, then optimize approach to time-dependent mixed-integer optimal control problems (MIOCPs). In this study we focus on combinatorial constraints, in particular on restrictions on the number of switches on a fixed time grid. We propose a novel approach that is based on a decomposition of the MINLP into a NLP and a MILP. We discuss the relation of the MILP solution to the MINLP solution and formulate bounds for the gap between the two, depending on Lipschitz constants and the control discretization grid size. The MILP solution can also be used for an efficient initialization of the MINLP solution process. The speedup of the solution of the MILP compared to the MINLP solution is considerable already for general purpose MILP solvers. We analyze the structure of the MILP that takes switching constraints into account and propose a tailored Branch and Bound strategy that outperforms cplex on a numerical case study and hence further improves efficiency of our novel method.  相似文献   

20.
In the context of convex mixed integer nonlinear programming (MINLP), we investigate how the outer approximation method and the generalized Benders decomposition method are affected when the respective nonlinear programming (NLP) subproblems are solved inexactly. We show that the cuts in the corresponding master problems can be changed to incorporate the inexact residuals, still rendering equivalence and finiteness in the limit case. Some numerical results will be presented to illustrate the behavior of the methods under NLP subproblem inexactness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号