首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fission track registration efficiency of diethylene glycol bis allyl carbonate (dioctyl phthalate doped) [CR-39 (DOP)] solid state nuclear track detector (SSNTD) in solution medium (K wet) has been experimentally determined and is found to be (9.7 ± 0.5) × 10−4 cm. This is in good agreement with the values of other SSNTDs. The gamma irradiation effects in the dose range of 50.0–220.0 kGy on the bulk etch rate, V b and the activation energy for bulk etching, E of this solid state nuclear track detector (SSNTD) have also been studied. It is observed that the bulk etch rates increase and the activation energies for bulk etching decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation.  相似文献   

2.
The bulk-etch rates of a newly developed track detector which is a copolymer of N-allyloxycarbonyl diethanolamine-bis allylcarbonate (NADAC) and allyl diglycol carbonate (ADC) [NADAC-ADC (1:1, w/w)] have been determined at different temperatures to deduce its activation energy. The energy of activation is found to be (0.93 ± 0.07) eV. This compares very well with the values of activation energy reported in the literature for the most commonly used nuclear track detectors. The effects of gamma irradiation on this new detector in the dose range of 47.0–145.0 kGy have also been studied using bulk etch, UV–visible spectroscopic, and thermogravimetric analysis (TGA) techniques. The activation energy for bulk etching calculated from bulk etch rates measurements at different temperatures, optical band gaps determined from the UV–visible spectra, and the values of onset temperature of decomposition (T0) calculated from TGA curves were found to decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation.  相似文献   

3.
The gamma irradiation effects on the bulk etch rate, V b of an indigenously prepared new nuclear track detector which is a copolymer of allyl bis-(2-nitroxy-ethyl) carbomate (ABNEC) and allyl diglycol carbonate (ADC) [ABNEC:ADC (1:9)] were studied in the dose range of 25.0–250.0 kGy and etching temperature range of 60–80 °C. The bulk etch rates increase and the activation energy values for bulk etching of gamma-irradiated detectors decrease with the increase in gamma dose indicating the scission of the detector. UV–visible spectra of the unirradiated and the irradiated films were also taken to explore the possibility of using this new detector for gamma dose measurements.  相似文献   

4.
In the present work, we have determined the bulk-etch rates of a newly developed track detector called poly-[N-allyloxycarbonyl diethanolamine-bis allylcarbonate] (PNADAC) homopolymer at different temperatures to deduce its activation energy. The energy of activation is found to be (1.02±0.04) eV. This compares very well with the values of activation energy reported in the literature for the most commonly used nuclear track detectors. The effects of gamma irradiation on this new detector in the dose range of 4.7–14.5 Mrad have also been studied using UV–visible spectroscopic technique. The optical band gaps of the unirradiated and the gamma-irradiated detectors determined from the UV–visible spectra were found to decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation.  相似文献   

5.
The effects of gamma irradiation in the dose range of 1.0–20.0 Mrad on the etching and optical characteristics of Tuffak polycarbonate (C16H14O3)n nuclear track detector have been studied by using etching and UV–visible spectroscopic techniques. The bulk etch rates increase and the activation energies for bulk etching decrease with the increase in gamma dose. The optical band gaps determined from the UV–visible spectra were found to decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation.  相似文献   

6.
The molecular structure of triphenylsilane has been investigated by gas-phase electron diffraction and theoretical calculations. The electron diffraction intensities from a previous study (Rozsondai B, Hargittai I, J Organomet Chem 334:269, 1987) have been reanalyzed using geometrical constraints and initial values of vibrational amplitudes from calculations. The free molecule has a chiral, propeller-like equilibrium conformation of C 3 symmetry, with a twist angle of the phenyl groups τ = 39° ± 3°; the two enantiomeric conformers easily interconvert via three possible pathways. The low-frequency vibrational modes indicate that the three phenyl groups undergo large-amplitude torsional and out-of-plane bending vibrations about their respective Si–C bonds. Least-squares refinement of a model accounting for the bending vibrations gives the following bond distances and angles with estimated total errors: r g(Si–C) = 1.874 ± 0.004 ?, 〈r g(C–C)〉 = 1.402 ± 0.003 ?, 〈r g(C–H)〉 = 1.102 ± 0.003 ?, and ∠aC–Si–H = 108.6° ± 0.4°. Electron diffraction studies and MO calculations show that the lengths of the Si–C bonds in H4−n SiPh n molecules (n = 1–4) increase gradually with n, due to π → σ*(Si–C) delocalization. They also show that the mean lengths of the ring C–C bonds are about 0.003 ? larger than in unsubstituted benzene, due to a one hundredth angstrom lengthening of the Cipso–Cortho bonds caused by silicon substitution. A small increase of r(Si–H) and decrease of the ipso angle with increasing number of phenyl groups is also revealed by the calculations.  相似文献   

7.
The effects of UV irradiation (λ=254 nm) on polyester nuclear track detector have been investigated employing bulk-etch technique, UV–visible spectrophotometry and infra-red spectrometry (FTIR). The activation energy values for bulk-etching were found to decrease with the UV-irradiation time indicating the scission of the polymer. Not much shift in the absorption edge due to UV irradiation was seen in the UV–visible spectra. FTIR studies also indicate the scission of the chemical bonds, thereby further validating the bulk-etch rate results.  相似文献   

8.
Conformational analysis and frequency calculation were achieved for 1-phenyl-1,2-propandione 1-oxime and its four tautomers: 1-nitroso-1-phenyl-1-propen-2-ol, 1-nitroso-1-phenyl-2-propanone, 2-hydroxy-1-phenyl-propenone oxime, and 3-nitroso-3-phenyl-propen-2-ol. Calculations were carried out at the Hartree–Fock (HF), Density Functional Theory (B3LYP), and the second-order M?llerPlesset perturbation (MP2) levels of theory using 6-31G* and 6-311G** basis sets. Five conformers with no imaginary vibrational frequency were obtained by free rotations around three single bonds of 1-phenyl-1,2-propandione-1-oxime: Ph–C(NOH)C(O)CH3, PhC(NOH)–C(O)CH3, and PhC(N–OH)C(O)CH3. Similarly, eight structures with no imaginary vibrational frequency were encountered upon rotations around three single bonds of 1-nitroso-1-phenyl-1-propen-2-ol: Ph–C(NO)C(OH)CH3, PhC(N–O)C(OH)CH3, and PhC(NO)C(–OH)CH3. In the same manner, six minima were found through rotations around three single bonds of 1-nitroso-1-phenyl-2-propanone: Ph–CH(NO)C(O)CH3, PhCH(–NO)C(O)CH3, and PhCH(NO)–C(O)CH3. Also, two minima were found through rotations around four single bonds of 2-hydroxy-1-phenyl-propenone oxime: Ph–C(NOH)C(OH)CH2, PhC(N–OH)C(OH)CH2, PhC(NOH)–C(OH)CH2, and Ph-C(NOH)C(–OH)CH2. Finally, two minima were found through rotations around four single bonds of 3-nitroso-3-phenyl-propen-2-ol: Ph–CH(NO)C(OH)CH2, PhCH(–NO)C(OH)CH2, PhCH(NO)–C(OH)CH2, and PhCH(NO)C(–OH)CH2. Interconversions within the above sets of conformers were probed through scanning (one and/or two dimensional), and/or QST3 techniques. The order of the stability of global minima encountered was: 1,2-propandione-1-oxime > 1-nitroso-1-phenyl-2-propanone > 1-nitroso-1-phenyl-1-propen-2-ol > 2-hydroxy-1-phenyl-propenone oxime > 3-nitroso-3-phenyl-propen-2-ol. Hydrogen bonding appears significant in tautomers of 1-nitroso-1-phenyl-1-propen-2-ol and 2-hydroxy-1-phenyl-propenone oxime. The CIS simulated λmax for the first excited singlet state (S1) of 1-phenyl-1,2-propandione 1-oxime is 300.4 nm, which was comparable to its experimental λmax of 312.0 nm. The calculated IR spectra of 1-phenyl-1,2-propandione 1-oxime and its tautomers were compared to the experimental spectra.  相似文献   

9.
Summary. Conformational analysis and frequency calculation were achieved for 1-phenyl-1,2-propandione 1-oxime and its four tautomers: 1-nitroso-1-phenyl-1-propen-2-ol, 1-nitroso-1-phenyl-2-propanone, 2-hydroxy-1-phenyl-propenone oxime, and 3-nitroso-3-phenyl-propen-2-ol. Calculations were carried out at the Hartree–Fock (HF), Density Functional Theory (B3LYP), and the second-order M?llerPlesset perturbation (MP2) levels of theory using 6-31G* and 6-311G** basis sets. Five conformers with no imaginary vibrational frequency were obtained by free rotations around three single bonds of 1-phenyl-1,2-propandione-1-oxime: Ph–C(NOH)C(O)CH3, PhC(NOH)–C(O)CH3, and PhC(N–OH)C(O)CH3. Similarly, eight structures with no imaginary vibrational frequency were encountered upon rotations around three single bonds of 1-nitroso-1-phenyl-1-propen-2-ol: Ph–C(NO)C(OH)CH3, PhC(N–O)C(OH)CH3, and PhC(NO)C(–OH)CH3. In the same manner, six minima were found through rotations around three single bonds of 1-nitroso-1-phenyl-2-propanone: Ph–CH(NO)C(O)CH3, PhCH(–NO)C(O)CH3, and PhCH(NO)–C(O)CH3. Also, two minima were found through rotations around four single bonds of 2-hydroxy-1-phenyl-propenone oxime: Ph–C(NOH)C(OH)CH2, PhC(N–OH)C(OH)CH2, PhC(NOH)–C(OH)CH2, and Ph-C(NOH)C(–OH)CH2. Finally, two minima were found through rotations around four single bonds of 3-nitroso-3-phenyl-propen-2-ol: Ph–CH(NO)C(OH)CH2, PhCH(–NO)C(OH)CH2, PhCH(NO)–C(OH)CH2, and PhCH(NO)C(–OH)CH2. Interconversions within the above sets of conformers were probed through scanning (one and/or two dimensional), and/or QST3 techniques. The order of the stability of global minima encountered was: 1,2-propandione-1-oxime > 1-nitroso-1-phenyl-2-propanone > 1-nitroso-1-phenyl-1-propen-2-ol > 2-hydroxy-1-phenyl-propenone oxime > 3-nitroso-3-phenyl-propen-2-ol. Hydrogen bonding appears significant in tautomers of 1-nitroso-1-phenyl-1-propen-2-ol and 2-hydroxy-1-phenyl-propenone oxime. The CIS simulated λmax for the first excited singlet state (S1) of 1-phenyl-1,2-propandione 1-oxime is 300.4 nm, which was comparable to its experimental λmax of 312.0 nm. The calculated IR spectra of 1-phenyl-1,2-propandione 1-oxime and its tautomers were compared to the experimental spectra.  相似文献   

10.
Garware Polyester Film, an indigenously available material has been evaluated systematically as a nuclear track detector for the detection of fission fragments. The relative fission track detection efficiency of this film was found to be (86.0±4.0)%. The bulk etch rate, determined by the gravimetric method, was found to be 0.75±0.05 μm/h. The track etch rate was determined as 15.0±1.5 μm/h. This detector was employed for the estimation of uranium in seawater samples and the results obtained were compared with the results obtained by using the commonly used Lexan detector. Uranium fractions after chemical separation from seawater samples were also analyzed by alpha-spectrometry and neutron activation analysis techniques and the results were compared with that obtained by the fission track method. Fission track method has the advantage, as it does not require any chemical separation. The indigenously available polyester film (polyethylene terphthalate) appears to be a good substitute of Lexan as nuclear track detector.  相似文献   

11.
Material analysis with prompt gamma neutron activation analysis (PGNAA) requires a proper geometrical arrangement for equipments in laboratory. Application of PGNAA in analysis of biological samples, due to small size of sample, needs attention to the dimension of neutron beam. In our work, neutron source has been made of 241Am–Be type. Activity of 241Am was 20 Ci which lead to neutron source strength of 4.4 × 107 neutrons per second. Water has been considered as the basic shielding material for the neutron source. The effect of various concentration of boric acid in the reduction of intensity of fast and thermal components of the neutron beam and gamma ray has been investigated. Gamma ray is produced by (α, n) reaction in Am–Be source (4.483 MeV), neutron capture by hydrogen (2.224 MeV), and neutron capture by boron (0.483 MeV). Various types of neutron and gamma ray dosimeters have been employed including BF3 and NE-213 detectors to detect fast and thermal neutrons. BGO scintillation detector has been used for gamma ray spectroscopy. It is shown that the gamma and neutron radiation dose due to direct beam is of the same magnitude as the dose due to radiation scattered in the laboratory ambient. It is concluded that 14 kg boric acid dissolved in 1,000 kg water is the optimum solution to surround the neutron source. The experimental results have been compared with Monte Carlo simulation.  相似文献   

12.
Noscapine and its derivatives are important microtubule-interfering agents shown to have potent anti-tumor activity. The binding free energies (ΔG bind) of noscapinoids computed using linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model were in agreement with the experimental ΔG bind with average root mean square error of 0.082 kcal/mol. This LIE–SGB model guided us in designing a novel derivative of noscapine, amino-noscapine [(S)-3-((R)-9-amino-4-methoxy-6-methyl-5,6,7,8-tetrahydro [1, 3] dioxolo[4,5-g]isoquinolin-5-yl)-6,7-dimethoxy isobenzo-furan-1(3H)-one] that has higher tubulin binding activity (predicted ΔG bind = −6.438 kcal/mol and experimental ΔG bind = −6.628 kcal/mol) than noscapine, but does not significantly change the total extent of the tubulin subunit/polymer ratio. The modes of interaction of amino-noscapine with the binding pocket of tubulin involved three hydrogen bonds and are distinct compared to noscapine which involved only one hydrogen bond. Also the patterns of non-bonded interactions are albeit different between both the lignads. The ‘blind docking’ approach (docking of ligand with different binding sites of a protein and their evaluations) as well as the reasonable accuracy of calculating ΔG bind using LIE–SGB model constitutes the first evidence that this class of compounds binds to tubulin at a site overlapping with colchicine-binding site or close to it. Our results revealed that amino-noscapine has better anti-tumor activity than noscapine.  相似文献   

13.

Abstract  

A new parametrization for the Harmonic Oscillator Model of Aromaticity (HOMA) index to determine aromaticity of heterocycles is introduced. The new HOMA for Heterocycle Electron Delocalization (HOMHED) is based on the experimental data from electron diffraction X-ray for the reference molecules used to estimate the simple, double, and optimal bond lengths. Bond length of “pure” single and double bonds of non-conjugated systems or systems without π-electrons and/or n-electron delocalization were considered. The HOMHED index was determined for a series of five and six heterocycles with C–C, C–N, C–O, C–S, N–N, N–O, and N–S bonds. The π-electron delocalization of these heterocycles was determined by Krygowski-reformulated HOMA and HOMHED and it was proved that HOMHED worked in line with HOMA for all heterocycles, except those containing oxygen, which were found to be weak aromatic from Krygowski rHOMA calculations.  相似文献   

14.
 A novel surfactant peptide consisting of an arginine cation with laurate anion has been synthesized, purified and characterized. The critical micellar concentration (cmc) of peptide in aqueous solutions has been determined using spectroscopic techniques and is found to increase from 0.06 to 0.11 mM with increasing temperature (15–45 °C). Cmc is also determined in the presence of salts like NaCl, KCl and sodium acetate and it is found that these electrolytes hinder aggregation with a significant increase in the case of sodium acetate. The aggregation number of the surfactant peptide has been determined using fluorescence quenching measurements and is observed to decrease from 14 to 6 with increasing temperature (15–45 °C). The standard free energy change (ΔG 0 m) and standard enthalpy change (ΔH 0 m) of the peptide aggregate are found to be negative with a small positive value for standard entropy change (ΔS 0 m). The peptide aggregate seems to undergo phase transition above 50 °C as observed from UV–vis and fluorescence spectroscopy. From pyrene binding studies, it is shown that the interior dielectric constant increases from 5.08 at 34 °C to 8.77 at 50 °C and further decreases with increase in temperature indicating a phase change at 50 °C. Also, the ratio of excimer intensity to monomer intensity, which is a measure of microviscosity of the aggregate, decreases with increase in temperature with a change at 50 °C indicating a phase change. Received: 14 February 1997 Accepted: 13 August 1997  相似文献   

15.
In this work, the potential of microwave-assisted alkali pretreatment in order to improve the rupture of the recalcitrant structures of the cashew able bagasse (CAB), lignocellulosic by-product in Brazil with no commercial value, is obtained from cashew apple process to juice production, was studied. First, biomass composition of CAB was determined, and the percentage of glucan and lignin was 20.54 ± 0.70% and 33.80 ± 1.30%, respectively. CAB content in terms of cellulose, hemicelluloses, and lignin, 19.21 ± 0.35%, 12.05 ± 0.37%, and 38.11 ± 0.08%, respectively, was also determined. Results showed that, after enzymatic hydrolysis, alkali concentration exerted influence on glucose formation, after pretreatment with 0.2 and 1.0 mo L−1 of NaOH (372 ± 12 and 355 ± 37 mg gglucan−1) when 2% (w/v) of cashew apple bagasse pretreated by microwave-assisted alkali pretreatment (CAB-M) was used. On the other hand, pretreatment time (15–30 min) and microwave power (600–900 W) exerted no significant effect on hydrolysis. On enzymatic hydrolysis step, improvement on solid percentage (16% w/v) and enzyme load (30 FPU gCAB-M−1) increased glucose concentration to 15 g L−1. The fermentation of the hydrolyzate by Saccharomyces cerevesiae resulted in ethanol concentration and productivity of 5.6 g L−1 and 1.41 g L−1 h−1, respectively.  相似文献   

16.
Derivative of 8-hydroxyquinoline i.e. Clioquinol is well known for its antibiotic properties, drug design and coordinating ability towards metal ion such as Copper(II). The structure of mixed ligand complexes has been investigated using spectral, elemental and thermal analysis. In vitro anti microbial activity against four bacterial species were performed i.e. Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus substilis and found that synthesized complexes (15–37 mm) were found to be significant potent compared to standard drugs (clioquinol i.e. 10–26 mm), parental ligands and metal salts employed for complexation. The kinetic parameters such as order of reaction (n = 0.96–1.49), and the energy of activation (E a = 3.065–142.9 kJ mol−1), have been calculated using Freeman–Carroll method. The range found for the pre-exponential factor (A), the activation entropy (S* = −91.03 to−102.6 JK−1 mol−1), the activation enthalpy (H* = 0.380–135.15 kJ mol−1), and the free energy (G* = 33.52–222.4 kJ mol−1) of activation reveals that the complexes are more stable. Order of stability of complexes were found to be [Cu(A4)(CQ)OH] · 4H2O > [Cu(A3)(CQ)OH] · 5H2O > [Cu(A1)(CQ)OH] · H2O > [Cu(A2)(CQ)OH] · 3H2O  相似文献   

17.
The gamma irradiation method has provided a route for synthesis of highly water-soluble, good-quality luminescent CdS/dendrimer nanocomposites with amino- or carboxyl-terminated PAMAM dendrimer. An attempt has been made to probe ascorbic acid with the as-synthesized CdS/dendrimer nanocomposites (DNC). Ascorbic acid (AA) is an important biological antioxidant and marker for different diseases in clinical chemistry as well as in quality control in the food industry. Micromolar concentrations of AA significantly quenched the photoluminescence (PL) of both amino (–NH2) and carboxylic (–COOH) functionalized semiconductor nanocomposites. The quenching followed a linear Stern–Volmer equation and time-resolved photoluminescence spectroscopy confirmed its static nature. A strong size dependence of the quenching pattern was observed. The binding constants, and the corresponding thermodynamic parameters ΔG θ, ΔH θ, ΔS θ at different temperatures were calculated. CdS DNC showed selectivity towards ascorbic acid even in the presence of possible interfering molecules, such as uric acid, tartaric acid and citric acid. Nanocomposites-based assay techniques could override the complications involved in multitudes of assay procedures, providing a simple and fast new strategy for the quantification of Ascorbic acid in the range of 16.6 to 100 μM (R = 0.998, n = 9). The proposed method was applied to the detection of ascorbic acid in Vitamin C tablets with satisfactory results.  相似文献   

18.
In this paper, the thermal behaviours of two organophosphorous compounds, N,N-dimethyl-N′,N′-diphenylphosphorodihydrazidic (NDD) and diphenyl amidophosphate (DPA), were studied by thermogravimetery (TG), differential thermal analysis (DTA) and differential scanning calorimetery (DSC) techniques under non-isothermal conditions. The results showed that NDD melts about 185 °C before it decomposes. NDD decomposition occurs in two continuous steps, in the 190–410 °C temperature range. First thermal degradation stage for NDD results a broad exothermic peak in the DTA curve that is continued with a small exothermic peak at the end of decomposition process. On the other hand, applying TG-DTA techniques indicates that DPA melts about 150 °C before it decomposes. This compound decomposes in the temperature range of 230 to 330 °C in two steps. These steps are endothermic and exothermic, respectively. Activation energy and pre-exponential factor for the first step of decomposition of each compound were found by means of Kissinger method and were verified by Ozawa–Flynn–Wall method. Activation energy obtained by Kissinger method for the first stage of NDD and DPA decompositions are 138 and 170 KJ mol−1, respectively. Finally, the thermodynamic parameters (ΔG #, ΔH # and ΔS #) for first step decomposition of investigated organophosphorous were determined.  相似文献   

19.
Thermolysis of double complex salt [Pd(NH3)4][AuCl4]2 has been studied in helium atmosphere from ambient to 350 °C. The XAFS of Pd K and Au L3 edges and thermogravimetry measurements have been carried out to characterize the intermediates and the final product. In the temperature range 115–160 °C the complex is decomposed to form Pd(NH3)2Cl2 and AuCl4−x N x species with x ranging from 2 to 3. Subsequent heating of the intermediate up to 300 °C leads to the total loss of NH3. The Au–Cl and Au–Au bonds form the local environment of Au at the stage of decomposition while only four chlorine atoms are around Pd. At the temperature of 330 °C the Au and Pd nanoparticles as well as residues of palladium chloride are detected. The final product consists of separated Au and Pd nanoparticles.  相似文献   

20.
Mercury-mercury (II) sulphide electrode has been prepared and its electrochemical and thermodynamic behaviour has been studied in different media. The electrode is found to show Nernstian response to pS (− log [S2−]) over the range 5.19–10.38. In the pH range 7.96–11.98, at constant [S2−]v, its response is also Nernstian. The values of thermodynamic functions, viz., ΔG0. ΔH0, and ΔS0 for the electrode reaction: Hg(3)+S2− ⇌HgS(s)+2e, have been determined. Further, the standard free energy of formation (ΔG f 0 ) and solubility product constant (K vp ) of HgS in aqueous medium at 25±0.1°C have also been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号