首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the space \({L_{2}(\mathbf{R}^{d}) (d \le 3)}\) we consider the Schrödinger operator \({H_{\gamma}=-{\Delta}+ V(\mathbf{x})\cdot+\gamma W(\mathbf{x})\cdot}\), where \({V(\mathbf{x})=V(x_{1}, x_{2}, \dots, x_{d})}\) is a periodic function with respect to all the variables, \({\gamma}\) is a small real coupling constant and the perturbation \({W(\mathbf{x})}\) tends to zero sufficiently fast as \({|\mathbf{x}|\rightarrow\infty}\). We study so called virtual bound levels of the operator \({H_\gamma}\), i.e., those eigenvalues of \({H_\gamma}\) which are born at the moment \({\gamma=0}\) in a gap \({(\lambda_-,\,\lambda_+)}\) of the spectrum of the unperturbed operator \({H_0=-\Delta+ V(\mathbf{x})\cdot}\) from an edge of this gap while \({\gamma}\) increases or decreases. We assume that the dispersion function of H0, branching from an edge of \({(\lambda_-,\lambda_+)}\), is non-degenerate in the Morse sense at its extremal set. For a definite perturbation \({(W(\mathbf{x})\ge 0)}\) we show that if d ≤ 2, then in the gap there exist virtual eigenvalues which are born from this edge. We investigate their number and an asymptotic behavior of them and of the corresponding eigenfunctions as \({\gamma\rightarrow 0}\). For an indefinite perturbation we estimate the multiplicity of virtual bound levels. In particular, we show that if d = 3 and both edges of the gap \({(\lambda_-,\,\lambda_+)}\) are non-degenerate, then under additional conditions there is a threshold for the birth of the impurity spectrum in the gap, i.e., \({\sigma(H_\gamma)\cap(\lambda_-,\,\lambda_+)=\emptyset}\) for a small enough \({|\gamma|}\).  相似文献   

2.
In this paper, we relate the special values at a non-positive integer \({\underline{\mathbf{s}}=(s_{1},\ldots, s_{r})= -\underline{\mathbf{N}}= (-N_{1},\ldots, -N_{r})}\) obtained by meromorphic continuation of the multiple Dirichlet series \({{Z(\underline{\mathbf{P}}, \underline{\mathbf{s}})=\sum_{\underline{m}\in {\mathbb{N}}^{*n}}{\frac{1}{\prod_{i=1}^{r}{P_{i}^{ s_{i}}(\underline{m})}}}}}\) to special values of the function \({Y(\underline{\mathbf{P}}, \underline{\mathbf{s}})=\int_{[1, +\infty[^{n}} {\prod_{i=1}^{r}{P_{i}^{- s_{i}}(\underline{\mathbf{x}})}\; d{\underline{\mathbf{x}}}}}\) where \({\underline{\mathbf{P}}=(P_{1},..., P_{r}),\; (r\geq 1)}\) are elliptic polynomials in “\({n}\) ” variables. We prove a simple relation between \({Z(\underline{\mathbf{P}}_{\underline{\mathbf{a}}}, -\underline{\mathbf{N}})}\) and \({Y(\underline{\mathbf{P}}_{\underline{\mathbf{a}}}, -\underline{\mathbf{N}})}\), such that for all \({\underline{\mathbf{a}} \in {\mathbb{R}}^{n}_{+}}\), we denote \({\underline{\mathbf{P}}_{\underline{\mathbf{a}}}:=(P_{1 \underline{\mathbf{a}}},\ldots, P_{r \underline{\mathbf{a}}})}\), where \({P_{i\;\underline{\mathbf{a}}}(\underline{\mathbf{x}}):= P_i(\underline{\mathbf{x}}+ \underline{\mathbf{a}})\; (1\leq i\leq r)}\) is the shifted polynomial.  相似文献   

3.
We consider the robust (or min-max) optimization problem
$J^*:=\max_{\mathbf{y}\in{\Omega}}\min_{\mathbf{x}}\{f(\mathbf{x},\mathbf{y}): (\mathbf{x},\mathbf{y})\in\mathbf{\Delta}\}$
where f is a polynomial and \({\mathbf{\Delta}\subset\mathbb{R}^n\times\mathbb{R}^p}\) as well as \({{\Omega}\subset\mathbb{R}^p}\) are compact basic semi-algebraic sets. We first provide a sequence of polynomial lower approximations \({(J_i)\subset\mathbb{R}[\mathbf{y}]}\) of the optimal value function \({J(\mathbf{y}):=\min_\mathbf{x}\{f(\mathbf{x},\mathbf{y}): (\mathbf{x},\mathbf{y})\in \mathbf{\Delta}\}}\). The polynomial \({J_i\in\mathbb{R}[\mathbf{y}]}\) is obtained from an optimal (or nearly optimal) solution of a semidefinite program, the ith in the “joint + marginal” hierarchy of semidefinite relaxations associated with the parametric optimization problem \({\mathbf{y}\mapsto J(\mathbf{y})}\), recently proposed in Lasserre (SIAM J Optim 20, 1995-2022, 2010). Then for fixed i, we consider the polynomial optimization problem \({J^*_i:=\max\nolimits_{\mathbf{y}}\{J_i(\mathbf{y}):\mathbf{y}\in{\Omega}\}}\) and prove that \({\hat{J}^*_i(:=\displaystyle\max\nolimits_{\ell=1,\ldots,i}J^*_\ell)}\) converges to J* as i → ∞. Finally, for fixed ? ≤ i, each \({J^*_\ell}\) (and hence \({\hat{J}^*_i}\)) can be approximated by solving a hierarchy of semidefinite relaxations as already described in Lasserre (SIAM J Optim 11, 796–817, 2001; Moments, Positive Polynomials and Their Applications. Imperial College Press, London 2009).
  相似文献   

4.
Let \({C^*_r(\mathbb{F}_{\infty})}\) be the reduced C*-algebra of the free group on infinitely many generators. Say that \({a, b \in C^*_r(\mathbb{F}_{\infty})_{SA}}\). Then \({a}\) is majorized by \({b}\) if and only if \({a \in \overline{Conv(U(b))}.}\) In particular, \({\tau(b)1 \in \overline{Conv(U(b))}.}\) Moreover, in the above results, we provide uniform bounds for the number of unitary conjugates needed for a given approximation. In the above, \({Conv(U(b))}\) is the convex hull of the unitary orbit of \({b}\) in \({C^*_r(\mathbb{F}_{\infty})}\).  相似文献   

5.
We prove a Beurling-Blecher-Labuschagne theorem for \({H^\infty}\)-invariant spaces of \({L^p(\mathcal{M},\tau)}\) when \({0 < p \leq\infty}\), using Arveson’s non-commutative Hardy space \({H^\infty}\) in relation to a von Neumann algebra \({\mathcal{M}}\) with a semifinite, faithful, normal tracial weight \({\tau}\). Using the main result, we are able to completely characterize all \({H^\infty}\)-invariant subspaces of \({L^p(\mathcal{M} \rtimes_\alpha \mathbb{Z},\tau)}\), where \({\mathcal{M} \rtimes_\alpha \mathbb{Z} }\) is a crossed product of a semifinite von Neumann algebra \({\mathcal{M}}\) by the integer group \({\mathbb{Z}}\), and \({H^\infty}\) is a non-selfadjoint crossed product of \({\mathcal{M}}\) by \({\mathbb{Z}^+}\). As an example, we characterize all \({H^\infty}\)-invariant subspaces of the Schatten p-class \({S^p(\mathcal{H})}\), where \({H^\infty}\) is the lower triangular subalgebra of \({B(\mathcal{H})}\), for each \({0 < p \leq\infty}\).  相似文献   

6.
We investigate Weyl type asymptotics of functional-difference operators associated to mirror curves of special del Pezzo Calabi-Yau threefolds. These operators are \({H(\zeta) = U + U^{-1} + V + \zeta V^{-1}}\) and \({H_{m,n} = U + V + q^{-mn}U^{-m}V^{-n}}\), where \({U}\) and \({V}\) are self-adjoint Weyl operators satisfying \({UV = q^{2}VU}\) with \({q = {\rm e}^{{\rm i}\pi b^{2}}}\), \({b > 0}\) and \({\zeta > 0}\), \({m, n \in \mathbb{N}}\). We prove that \({H(\zeta)}\) and \({H_{m,n}}\) are self-adjoint operators with purely discrete spectrum on \({L^{2}(\mathbb{R})}\). Using the coherent state transform we find the asymptotical behaviour for the Riesz mean \({\sum_{j\ge 1}(\lambda - \lambda_{j})_{+}}\) as \({\lambda \to \infty}\) and prove the Weyl law for the eigenvalue counting function \({N(\lambda)}\) for these operators, which imply that their inverses are of trace class.  相似文献   

7.
Consider an arithmetic group \({\mathbf{G}(O_S)}\), where \({\mathbf{G}}\) is an affine group scheme with connected, simply connected absolutely almost simple generic fiber, defined over the ring of S-integers O S of a number field K with respect to a finite set of places S. For each \({n \in \mathbb{N}}\), let \({R_n(\mathbf{G}(O_S))}\) denote the number of irreducible complex representations of \({\mathbf{G}(O_S)}\) of dimension at most n. The degree of representation growth \({\alpha(\mathbf{G}(O_S)) = \lim_{n \rightarrow\infty}\log R_n(\mathbf{G}(O_S)) / \log n}\) is finite if and only if \({\mathbf{G}(O_S)}\) has the weak Congruence Subgroup Property. We establish that for every \({\mathbf{G}(O_S)}\) with the weak Congruence Subgroup Property the invariant \({\alpha(\mathbf{G}(O_S))}\) is already determined by the absolute root system of \({\mathbf{G}}\). To show this we demonstrate that the abscissae of convergence of the representation zeta functions of such groups are invariant under base extensions \({K{\subset}L}\). We deduce from our result a variant of a conjecture of Larsen and Lubotzky regarding the representation growth of irreducible lattices in higher rank semi-simple groups. In particular, this reduces Larsen and Lubotzky’s conjecture to Serre’s conjecture on the weak Congruence Subgroup Property, which it refines.  相似文献   

8.
For a fairly general reductive group \({G_{/\mathbb{Q}_p}}\), we explicitly compute the space of locally algebraic vectors in the Breuil–Herzig construction \({\Pi(\rho)^{ord}}\), for a potentially semistable Borel-valued representation \({\rho}\) of \({Gal(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)}\). The point being we deal with the whole representation, not just its socle—and we go beyond \({GL_n(\mathbb{Q}_p)}\). In the case of \({GL_2(\mathbb{Q}_p)}\), this relation is one of the key properties of the \({p}\)-adic local Langlands correspondence. We give an application to \({p}\)-adic local-global compatibility for \({\Pi(\rho)^{ord}}\) for modular representations, but with no indecomposability assumptions.  相似文献   

9.
We call the \({\delta}\)-vector of an integral convex polytope of dimension d flat if the \({\delta}\)-vector is of the form \({(1,0,\ldots,0,a,\ldots,a,0,\ldots,0)}\), where \({a \geq 1}\). In this paper, we give the complete characterization of possible flat \({\delta}\)-vectors. Moreover, for an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^N}\) of dimension d, we let \({i(\mathcal{P},n)=|n\mathcal{P}\cap \mathbb{Z}^N|}\) and \({i^*(\mathcal{P},n)=|n(\mathcal{P} {\setminus}\partial \mathcal{P})\cap \mathbb{Z}^N|}\). By this characterization, we show that for any \({d \geq 1}\) and for any \({k,\ell \geq 0}\) with \({k+\ell \leq d-1}\), there exist integral convex polytopes \({\mathcal{P}}\) and \({\mathcal{Q}}\) of dimension d such that (i) For \({t=1,\ldots,k}\), we have \({i(\mathcal{P},t)=i(\mathcal{Q},t),}\) (ii) For \({t=1,\ldots,\ell}\), we have \({i^*(\mathcal{P},t)=i^*(\mathcal{Q},t)}\), and (iii) \({i(\mathcal{P},k+1) \neq i(\mathcal{Q},k+1)}\) and \({i^*(\mathcal{P},\ell+1)\neq i^*(\mathcal{Q},\ell+1)}\).  相似文献   

10.
11.
Denoising has to do with estimating a signal \(\mathbf {x}_0\) from its noisy observations \(\mathbf {y}=\mathbf {x}_0+\mathbf {z}\). In this paper, we focus on the “structured denoising problem,” where the signal \(\mathbf {x}_0\) possesses a certain structure and \(\mathbf {z}\) has independent normally distributed entries with mean zero and variance \(\sigma ^2\). We employ a structure-inducing convex function \(f(\cdot )\) and solve \(\min _\mathbf {x}\{\frac{1}{2}\Vert \mathbf {y}-\mathbf {x}\Vert _2^2+\sigma {\lambda }f(\mathbf {x})\}\) to estimate \(\mathbf {x}_0\), for some \(\lambda >0\). Common choices for \(f(\cdot )\) include the \(\ell _1\) norm for sparse vectors, the \(\ell _1-\ell _2\) norm for block-sparse signals and the nuclear norm for low-rank matrices. The metric we use to evaluate the performance of an estimate \(\mathbf {x}^*\) is the normalized mean-squared error \(\text {NMSE}(\sigma )=\frac{{\mathbb {E}}\Vert \mathbf {x}^*-\mathbf {x}_0\Vert _2^2}{\sigma ^2}\). We show that NMSE is maximized as \(\sigma \rightarrow 0\) and we find the exact worst-case NMSE, which has a simple geometric interpretation: the mean-squared distance of a standard normal vector to the \({\lambda }\)-scaled subdifferential \({\lambda }\partial f(\mathbf {x}_0)\). When \({\lambda }\) is optimally tuned to minimize the worst-case NMSE, our results can be related to the constrained denoising problem \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-\mathbf {x}\Vert _2\}\). The paper also connects these results to the generalized LASSO problem, in which one solves \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-{\mathbf {A}}\mathbf {x}\Vert _2\}\) to estimate \(\mathbf {x}_0\) from noisy linear observations \(\mathbf {y}={\mathbf {A}}\mathbf {x}_0+\mathbf {z}\). We show that certain properties of the LASSO problem are closely related to the denoising problem. In particular, we characterize the normalized LASSO cost and show that it exhibits a “phase transition” as a function of number of observations. We also provide an order-optimal bound for the LASSO error in terms of the mean-squared distance. Our results are significant in two ways. First, we find a simple formula for the performance of a general convex estimator. Secondly, we establish a connection between the denoising and linear inverse problems.  相似文献   

12.
It is well known that the pseudovariety \(\mathbf {J}\) of all \(\mathscr {J}\)-trivial monoids is not local, which means that the pseudovariety \(g\mathbf {J}\) of categories generated by \(\mathbf {J}\) is a proper subpseudovariety of the pseudovariety \(\ell \mathbf {J}\) of categories all of whose local monoids belong to \(\mathbf {J}\). In this paper, it is proved that the pseudovariety \(\mathbf {J}\) enjoys the following weaker property. For every prime number p, the pseudovariety \(\ell \mathbf {J}\) is a subpseudovariety of the pseudovariety \(g(\mathbf {J}*\mathbf {Ab}_p)\), where \(\mathbf {Ab}_p\) is the pseudovariety of all elementary abelian p-groups and \(\mathbf {J}*\mathbf {Ab}_p\) is the pseudovariety of monoids generated by the class of all semidirect products of monoids from \(\mathbf {J}\) by groups from \(\mathbf {Ab}_p\). As an application, a new proof of the celebrated equality of pseudovarieties \(\mathbf {PG}=\mathbf {BG}\) is obtained, where \(\mathbf {PG}\) is the pseudovariety of monoids generated by the class of all power monoids of groups and \(\mathbf {BG}\) is the pseudovariety of all block groups.  相似文献   

13.
Let \({\Omega}\) be a Lipschitz bounded domain of \({\mathbb{R}^N}\), \({N\geq2}\), and let \({u_p\in W_0^{1,p}(\Omega)}\) denote the p-torsion function of \({\Omega}\), p > 1. It is observed that the value 1 for the Cheeger constant \({h(\Omega)}\) is threshold with respect to the asymptotic behavior of up, as \({p\rightarrow 1^+}\), in the following sense: when \({h(\Omega) > 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_{p}\right\| _{L^\infty(\Omega)}=0}\), and when \({h(\Omega) < 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega)}=\infty}\). In the case \({h(\Omega)=1}\), it is proved that \({\limsup_{p\rightarrow1^+}\left\|u_p\right\|_{L^\infty(\Omega)}<\infty}\). For a radial annulus \({\Omega_{a,b}}\), with inner radius a and outer radius b, it is proved that \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega_{a,b})}=0}\) when \({h(\Omega_{a,b})=1}\).  相似文献   

14.
It is known that the maximal operator \({\sigma^{\kappa,*}(f)} := sup_{n \in \mathbf{P}}{|{\sigma}_{n}^{\kappa} (f)|}\) is bounded from the dyadic Hardy space \({H_{p}}\) into the space \({L_{p}}\) for \({p > 2/3}\) [6]. Moreover, Goginava and Nagy showed that \({\sigma^{\kappa,*}}\) is not bounded from the Hardy space \({H_{2/3}}\) to the space \({L_{2/3}}\) [9]. The main aim of this paper is to investigate the case \({0 < p < 2/3}\). We show that the weighted maximal operator \({\tilde{\sigma}^{\kappa,*,p}(f) :=sup_{n\in \mathbf{P}} \frac{|{\sigma}_{n}^\kappa (f)|}{n^{2/p-3}}}\), is bounded from the Hardy space \({H_{p}}\) into the space \({L_{p}}\) for any \({0 < p < 2/3}\). With its aid we provide a necessary and sufficient condition for the convergence of Walsh–Kaczmarz–Marcinkiewicz means in terms of modulus of continuity on the Hardy space \({H_p}\), and prove a strong convergence theorem for this means.  相似文献   

15.
In this paper, we study helicoidal surfaces without parabolic points in Euclidean 3-space \({\mathbb{R} ^{3}}\), satisfying the condition \({\Delta ^{II}\mathbf{G}=f(\mathbf{G}+C)}\), where \({\Delta ^{II}}\) is the Laplace operator with respect to the second fundamental form, f is a smooth function on the surface and C is a constant vector. Our main results state that helicoidal surfaces without parabolic points in \({ \mathbb{R} ^{3}}\) which satisfy the condition \({\Delta ^{II} \mathbf{G}=f(\mathbf{G}+C)}\), coincide with helicoidal surfaces with non-zero constant Gaussian curvature.  相似文献   

16.
We study the transition density of a standard two-dimensional Brownian motion killed when hitting a bounded Borel set A. We derive the asymptotic form of the density, say \(p^A_t(\mathbf{x},\mathbf{y})\), for large times t and for \(\mathbf{x}\) and \(\mathbf{y}\) in the exterior of A valid uniformly under the constraint \(|\mathbf{x}|\vee |\mathbf{y}| =O(t)\). Within the parabolic regime \(|\mathbf{x}|\vee |\mathbf{y}| = O(\sqrt{t})\) in particular \(p^A_t(\mathbf{x},\mathbf{y})\) is shown to behave like \(4e_A(\mathbf{x})e_A(\mathbf{y}) (\lg t)^{-2} p_t(\mathbf{y}-\mathbf{x})\) for large t, where \(p_t(\mathbf{y}-\mathbf{x})\) is the transition kernel of the Brownian motion (without killing) and \(e_A\) is the Green function for the ‘exterior of A’ with a pole at infinity normalized so that \(e_A(\mathbf{x}) \sim \lg |\mathbf{x}|\). We also provide fairly accurate upper and lower bounds of \(p^A_t(\mathbf{x},\mathbf{y})\) for the case \(|\mathbf{x}|\vee |\mathbf{y}|>t\) as well as corresponding results for the higher dimensions.  相似文献   

17.
In this paper we consider the Schrödinger operator ?Δ + V on \({\mathbb R^d}\), where the nonnegative potential V belongs to the reverse Hölder class \({B_{q_{_1}}}\) for some \({q_{_1}\geq \frac{d}{2}}\) with d ≥ 3. Let \({H^1_L(\mathbb R^d)}\) denote the Hardy space related to the Schrödinger operator L = ?Δ + V and \({BMO_L(\mathbb R^d)}\) be the dual space of \({H^1_L(\mathbb R^d)}\). We show that the Schrödinger type operator \({\nabla(-\Delta +V)^{-\beta}}\) is bounded from \({H^1_L(\mathbb R^d)}\) into \({L^p(\mathbb R^d)}\) for \({p=\frac{d}{d-(2\beta-1)}}\) with \({ \frac{1}{2}<\beta<\frac{3}{2} }\) and that it is also bounded from \({L^p(\mathbb R^d)}\) into \({BMO_L(\mathbb R^d)}\) for \({p=\frac{d}{2\beta-1}}\) with \({ \frac{1}{2}<\beta< 2}\).  相似文献   

18.
We study the local Hecke algebra \({\mathcal{H}_{G}(K)}\) for \({G = {\rm GL}_{n}}\) and K a non-archimedean local field of characteristic zero. We show that for \({G = {\rm GL}_{2}}\) and any two such fields K and L, there is a Morita equivalence \({\mathcal{H}_{G}(K) \sim_{M} \mathcal{H}_{G}(L)}\), by using the Bernstein decomposition of the Hecke algebra and determining the intertwining algebras that yield the Bernstein blocks up to Morita equivalence. By contrast, we prove that for \({G = {\rm GL}_{n}}\), there is an algebra isomorphism \({\mathcal{H}_{G}(K) \cong \mathcal{H}_{G}(L)}\) which is an isometry for the induced \({L^1}\)-norm if and only if there is a field isomorphism \({K \cong L}\).  相似文献   

19.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

20.
We study the solution \({u(r,\rho)}\) of the quasilinear elliptic problem
$$\begin{cases}r^{-(\gamma-1)}(r^{\alpha}|u'|^{\beta-1}u')'+|u|^{p-1}u=0, & 0 < r < \infty, \\u(0)=\rho > 0,\ u'(0)=0.\end{cases}$$
The usual Laplace, \({m}\)-Laplace, and \({k}\)-Hessian operators are included in the differential operator \({r^{-(\gamma-1)}(r^{\alpha}|u'|^{\beta-1}u')'}\). Under certain conditions on \({\alpha}\), \({\beta}\), \({\gamma}\), and \({p}\), the equation has a singular positive solution \({u^*(r)}\) and the solution \({u(r,\rho)}\) is positive for \({r\ge 0}\). We study the intersection numbers between \({u(r,\rho)}\) and \({u^*(r)}\) and between \({u(r,\rho_0)}\) and \({u(r,\rho_1)}\). A generalized Joseph–Lundgren exponent \({p^*_{JL}}\) plays a crucial role. The main technique is a phase plane analysis. In particular, we use two changes of variables which transform the equation into two autonomous systems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号