共查询到19条相似文献,搜索用时 78 毫秒
1.
利用IRST(红外搜索与跟踪)系统所获取的各目标的角度及其红外光谱辐射功率和信息,通过对红外光谱辅射功率和的相关处理,运用选优的JPDA(联合概率数据关联)算法与IMM(交互多模型)算法实现了IRST系统的单站多目标跟踪,并通过两个仿真场景对算法性能进行了检验.仿真结果表明:在跟踪开始阶段,两个场景中的每个目标都能获得高精度的跟踪;当目标编队飞行时,算法能对各目标进行有效的跟踪,而且跟踪精确度也是令人满意的;当目标交叉飞行时,跟踪的误差明显加大,随着时间的延续,对远距离目标会失去跟踪能力,但对近距离目标仍能进行有效的跟踪. 相似文献
2.
3.
实现雷达和红外融合跟踪的基本思路是:首先提取红外成像的目标质心并将其转换到惯性坐标系:然后用最小二乘规则对红外传感器的冗余角度数据进行压缩,以产生在时间上和雷达测量对准的伪角度测量:再通过加权平均的方法分别与雷达的方位角和俯仰角测量进行融合处理,以得到同步数据融合估计。采用了由拉格朗日算法所求得的约束极值作为权系数,使用扩展的卡尔曼滤波方法设计跟踪滤波器,将基于雷达和红外融合得到的数据用于更新滤波器的目标状态。 相似文献
4.
5.
6.
7.
8.
9.
10.
11.
为了解决在目标跟踪系统中,传统相关算法在目标发生目标局部遮挡或旋转等姿态变化较大的情况时容易跟踪丢失的问题,提出一种改进的基于卡尔曼预测器的环形模板匹配相关跟踪的算法.利用卡尔曼预测器来预测下一帧目标可能出现的区域,然后在较小的预测区域中进行环形相关匹配运算,找到最佳相关匹配点,使跟踪更具主动性。环形匹配还可以克服由于姿态变化而引起的横向匹配点丢失,从而可以跟踪各种姿态运动的机动目标.实验中,利用改进算法对出现局部遮挡情况的姿态变化大的运动目标进行跟踪,传统算法处理此类情况容易跑飞,而本文算法不受这两种跟踪局限性的干扰,始终稳定跟踪机动目标且耗时大幅减少. 相似文献
12.
针对传统特征光流场跟踪方法中由于误差积累和错误匹配而导致的特征点丢失问题,基于一种新的Harris-SIFT特征点表示方法,提出基于预测帧与关键帧的算法框架,实现了光流场运动估计与局部特征识别相结合的目标跟踪方法.预测帧利用塔式分解和递归算法计算特征点的光流场运动矢量,使用运动矢量直方图获取目标的运动矢量,并剔除误匹配点;当特征点数量小于5个时,关键帧使用Harris-SIFT特征点进行局部特征匹配,利用仿射模型对目标精确定位及姿态修正.实验结果表明,本方法对视频序列中的纹理特征目标跟踪的鲁棒性较好,在背景复杂、目标遮挡或暂时丢失情况下,仍可以继续完成目标的可靠跟踪. 相似文献
13.
针对传统特征光流场跟踪方法中由于误差积累和错误匹配而导致的特征点丢失问题,基于一种新的Harris-SIFT特征点表示方法,提出基于预测帧与关键帧的算法框架,实现了光流场运动估计与局部特征识别相结合的目标跟踪方法.预测帧利用塔式分解和递归算法计算特征点的光流场运动矢量,使用运动矢量直方图获取目标的运动矢量,并剔除误匹配点;当特征点数量小于5个时,关键帧使用Harris-SIFT特征点进行局部特征匹配,利用仿射模型对目标精确定位及姿态修正.实验结果表明,本方法对视频序列中的纹理特征目标跟踪的鲁棒性较好,在背景复杂、目标遮挡或暂时丢失情况下,仍可以继续完成目标的可靠跟踪. 相似文献
14.
15.
16.
为提高目标亮度突变时的跟踪性能,在每一帧进行目标跟踪时,首先提取可见光图像的颜色特征,红外图像的垂直投影图像和水平投影图像特征,然后利用可见光/红外各自通道的Bhattacharyya系数计算该通道的权值,并对加权mean-shift双通道跟踪方法进行了推导,提出了基于加权mean-shift可见光/红外双通道目标跟踪算法.该方法使前后两帧目标相似度大的通道取大的权值,从而达到有效利用各通道有利信息、提高跟踪性能的目的.实验表明,用本文提出的算法进行可见光/红外双通道目标跟踪时,与基于mean-shift单通道(可见光或红外)目标跟踪算法相比,可提高目标跟踪的准确度,特别是当目标进入树荫区域,引起目标亮度发生显著变化时,跟踪性能基本不受影响. 相似文献
17.
基于特征角点的目标跟踪和快速识别算法研究 总被引:14,自引:0,他引:14
提出了一种基于特征角点的目标跟踪、识别方法,其运算效率较高,且角点不易丢失。从对基于灰度的角点提取方法和基于边缘的角点提取方法的比较入手,提出建立新特征模型的必要性。随后给出了一种既能提高运算效率又能简化跟踪模型的特征角点法。选取了飞行速度为300m/s的某战机序列共11帧连续图像作为处理对象,通过在主要配置为Pentium 4、80G内存计算机的、Matlab2006a软件的环境中进行仿真,算法的运算速度可达0.7s,与其他跟踪算法相比跟踪速度较快,表明该方法是一种简洁有效的目标跟踪识别方法。 相似文献
18.
当目标尺度发生变化时,传统均值漂移跟踪因窗口尺寸不变导致跟踪目标丢失.为解决该问题,提出一种带宽自适应的均值漂移跟踪算法.该算法在均值漂移框架下提取目标的形状特征,根据目标形状变化自适应的修正核函数带宽,并更新目标模板.实验结果表明,改进算法能很好地适应尺寸变化的目标,能有效提高红外目标的跟踪准确度. 相似文献