首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NMR of laser-polarized xenon is used to probe the dissolution behaviour of the noble gas in different liquids. The dissolution and self-relaxation rates are extracted via a macroscopic model, and comparison of the decay rate of the xenon magnetization in deuterated and non-deuterated solvent pairs allows the determination of the pure dipole-dipole contribution to relaxation. A transient convective effect, tentatively assigned to the xenon concentration gradient, is observed and characterized by diffusion encoding MRI experiments. The flow of xenon penetrates inside the solvent near the walls of the NMR tube, the longitudinal images showing a “” shape, the transverse ones a “O” shape. This convection effect has implications for delivery conditions of laser-polarized xenon in continuous flow experiments and magnetic resonance imaging. Received 29 April 2002 / Received in final form 26 July 2002 Published online 22 October 2002 RID="a" ID="a"e-mail: hdesvaux@cea.fr RID="b" ID="b"URA CNRS/CEA 331  相似文献   

2.
We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.  相似文献   

3.
In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores.  相似文献   

4.
We report initial NMR studies of continuous flow laser-polarized xenon gas, both in unrestricted tubing, and in a model porous media. The study uses Pulsed Gradient Spin Echo-based techniques in the gas-phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients. Pulsed Gradient Echo studies of continuous flow laser-polarized xenon gas in unrestricted tubing indicate clear diffraction minima resulting from a wide distribution of velocities in the flow field. The maximum velocity experienced in the flow can be calculated from this minimum, and is seen to agree with the information from the complete velocity spectrum, or motion propagator, as well as previously published images. The susceptibility of gas flows to parameters such as gas mixture content, and hence viscosity, are observed in experiments aimed at identifying clear structural features from echo attenuation plots of gas flow in porous media. Gas-phase NMR scattering, or position correlation flow-diffraction, previously clearly seen in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack is not so clear in experiments using a different gas mixture. A propagator analysis shows most gas in the sample remains close to static, while a small portion moves through a presumably near-unimpeded path at high velocities.  相似文献   

5.
The enhanced spin polarization produced by optical pumping of gaseous rubidium/xenon samples has made possible a number of recent experiments in nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI). Here we report MRI of laser-polarized xenon in the solid phase at low temperature. Due to the high xenon density in the solid phase and the enhanced spin polarization, it is possible to achieve high intensity and spatial resolution of the image. Signals were observed from xenon films solidified onto the glass container walls and not from an enclosed chili pepper.  相似文献   

6.
In this contribution we report new approaches to the MRI of materials using continuously produced laser-polarized (129)Xe gas. This leads to vastly improved sensitivity and makes new kinds of information available. The hyperpolarized xenon is produced in a continuous flow system that conveniently delivers the xenon at low partial pressure to probes for NMR and MRI experiments. We illustrate applications to the study of micropore and other kinds of void space and show for the first time that with flowing hyperpolarized xenon it is possible to obtain chemical-shift-resolved images in a relatively short time.  相似文献   

7.
The chemical shift sensitivity and significant signal enhancement afforded by laser-polarized 129Xe have motivated the application of 129Xe NMR to biological imaging and spectroscopy. Recent research done by our group has used laser-polarized 129Xe in biomolecular assays that detect ligand-binding events and distinguish protein conformations. The successful application of unfunctionalized and functionalized 129Xe NMR to in vitro biomolecular assays suggests the potential future use of a functionalized xenon biosensor for in vivo imaging.  相似文献   

8.
Gas-phase nuclear magnetic resonance (NMR) has great potential as a probe for a variety of interesting physical and biomedical problems that are not amenable to study by water or similar liquid. However, NMR of gases was largely neglected due to the low signal obtained from the thermally polarized gases with very low sample density. The advent of optical pumping techniques for enhancing the polarization of the noble gases3He and129Xe has bought new life to this field, especially in medical imaging where3He lung inhalation imaging is approaching a clinical application. However, there are numerous applications in materials science that also benefit from the use of these gases. We review primarily nonmedical applications of laser-polarized noble gases for both NMR imaging and spectroscopy and highlight progress with examples from our laboratory including high-resolution imaging at millitesla applied field strength and velocity imaging of convective flow. Porous media microstucture has been probed with both thermal and laser-polarized xenon, as xenon is an ideal probe due to low surface interaction with the grains of the porous media.  相似文献   

9.
Introduction  Bythemethodoflaseropticalpumpingspin exchange ,theNMRsignalfrom 1 2 9Xegascanbegreatlyenhanced[1 ] .Theobservedratioofsignaltonoiseisbetterthan 10 0 .Theamplificationfactorofthenuclearspinpolarizationoflaser polarized 1 2 9Xeis 10 4bycomparisonwiththeB…  相似文献   

10.
The NMR signal from the laser-polarized t29 Xe in low-pressure natural xenon gas has been observed with a Bruker WP-80SY NMR spectrometer. The laser-polarized 129 Xe was produced by the method of laser pumping and spin exchange in a magnetic field of 1.87 Tesla. It is obtained experimentally that the nuclear spin relaxation rate 1/T1 of laser-polarized 129Xe are (4.03±1.97)×10-3/see~(2.21±0.78)×10-3/see in the range of the 3.33×103 Pa~8.29×104 Pa Xe gas pressures, the apparent wall relaxation rate 1/Tw* =(1.98±0.18)×10-3/see, and the relaxation rate coefficient C of 133Cs-129Xe spin exchange is (2.81±0.74)×10-16 em3/sec.  相似文献   

11.
The photodissociation of a chlorine molecule in the environment of a xenon cluster has been studied experimentally using the real time pump and probe technique through the formation of an XeCl reaction product. The photodissociating system is probed in such a way that the movement of a single chlorine atom in the xenon environment is detected. Various XenCl2 cluster sizes have been investigated leading to the distinction between uncapped, half-capped and doubly capped structures for these clusters. These structures have a profound influence on the photodissociation dynamics. Retrapping of one chlorine atomic fragment and stabilization of the XeCl reaction product is only observed for the half and doubly capped clusters. The experimental work is complemented by classical molecular dynamics calculations to get a full picture of the photodissociation. Received: 17 February 1998 / Received in final form and Accepted: 28 July 1998  相似文献   

12.
129 Xe with a nuclear polarization far above the thermal equilibrium value (hyperpolarized) is used in NMR studies to increase sensitivity. Gaseous, adsorbed, or dissolved xenon is utilized in physical, chemical, and medical applications. With the aim in mind to study single-crystal surfaces by NMR of adsorbed hyperpolarized 129Xe, three problems have to be solved. The reliable production of 129Xe with highest nuclear polarization possible, the separation of the xenon gas from the necessary quench gas nitrogen without polarization loss, and the dosing/delivery of small amounts of polarized xenon gas to a sample surface. Here we describe an optical pumping setup that regularly produces xenon gas with a 129Xe nuclear polarization of 0.7(±0.07). We show that a freeze–pump–thaw separation of xenon and nitrogen is feasible without a significant loss in xenon polarization. The nitrogen partial pressure can be suppressed by a factor of 400 in a single separation cycle. Dosing is achieved by using the low vapor pressure of a frozen hyperpolarized xenon sample. Received: 12 June 1998  相似文献   

13.
When a system composed of dissolved laser-polarized xenon with negative spin temperature is put inside a high field NMR magnet, a series of spontaneous maser emissions can be observed. We report here their spectral and temporal features using a processing model derived from the solution of the Bloch equations in the presence of radiation damping. We show, in particular, that by combining Fourier transformation and squared modulus, a parameter allowing the characterization of the burst of transverse magnetization can be determined. This parameter is shown to be correlated with the radiated energy. Moreover, this processing clearly reveals features which can probably be assigned to effects resulting from distant dipolar fields. Finally, the analysis of the experimental data reveals an unexpected behavior of the 129Xe transverse self-relaxation.  相似文献   

14.
The presence of highly concentrated dissolved laser-polarized xenon (approximately 1mol/L, polarization up to 0.2) induces numerous effects on proton and xenon NMR spectra. We show that the proton signal enhancements due to (129)Xe-(1)H cross-relaxation (SPINOE) and overall shifts of the proton resonances due to the average dipolar shift created by the intense xenon magnetization are correlated. Protons behave as very useful sensors of the xenon magnetization. Indeed the xenon resonances exhibit many features such as superimposition of narrow lines on the main resonance due to clustering effects, or such as a polarization-dependent line broadening that is tentatively assigned to the effects of temperature fluctuations that decorrelate some distant dipolar field effects from local interactions, transforming xenon spins from "like" to "unlike" spins. These spectral features make difficult the determination of the average dipolar field by means of the xenon resonance but have interesting consequences on the heteronuclear polarization transfer experiment in Hartmann-Hahn conditions (SPIDER).  相似文献   

15.
Motivated by numerous X-ray scattering studies of lamellar phases with membrane proteins, amphiphilic peptides, polymers, or other inclusions, we have determined the modifications of the classical Caillé law for a smectic phase as a function of the nature and concentration of inclusions added to it. Besides a fundamental interest on the behavior of fluctuating systems with inclusions, a precise characterization of the action of a given protein on a lipid membrane (anchoring, swelling, stiffening ...) is of direct biological interest and could be probed by way of X-ray measurements. As a first step we consider three different couplings involving local pinching (or swelling), stiffening or curvature of the membrane. In the first two cases we predict that independent inclusions induce a simple renormalization of the bending and compression moduli of the smectic phase. The X-ray experiments may also be used to probe correlations between inclusions. Finally we show that asymmetric coupling (such as a local curvature of the membrane) results in a modification of the usual Caillé law. Received 10 March 2000 and Received in final form 30 August 2000  相似文献   

16.
The study of the dissolution of laser-polarized xenon in degassed deuterated benzene is reported. We show that the time evolution of the xenon signal implies that a transient convective process takes place. It is characterized by velocity-encoding magnetic resonance measurements and MRI experiments.  相似文献   

17.
Dynamic heterogeneities, i.e. the presence of molecules with different mobilities, have been established as one of the key features of the physics of supercooled liquids. Here we study in detail how the mobility of an individual molecule fluctuates with time. Our analysis is based on a time series of molecular dynamics simulations for a low molecular weight glass-former, propylene carbonate. We find that the variation of mobility with time of initially slow molecules significantly differs from that of initially fast molecules. We explicitly show the relation to the rate memory parameter which recently has been introduced to quantify the mobility fluctuations as observed via multidimensional NMR experiments. In this way qualitative agreement between simulation and experiment can be established although the time scales of simulation and NMR experiment differ by many orders of magnitude. Received 10 April 2000 and Received in final form 21 September 2000  相似文献   

18.
With the help of 155,157Gd NMR in we derive the contribution of Gd and Mn neighbours to the hyperfine field at the rare earth site in the spiral spin phase of the intermetallic compound GdMn6Ge6. The substitution of Gd for Y atoms allows the determination of the separate contribution of remote Gd neighbours. The different temperature dependence of the hyperfine contributions of the Gd and Mn neighbours gives the possibility to estimate the transferred hyperfine field of Mn at the rare earth site both in magnitude and sign. Received 31 May 2000 and Received in final form 26 September 2000  相似文献   

19.
We study the magnetic field dependence of the dielectric response of large cylindrical molecules such as nanotubes. When a field-induced level crossing takes place, an applied electric field has two effects: it may cause a linear instead of the usual quadratic Stark effect or the difference in the quadratic Stark coefficient of the two levels leads to a discontinuity in the polarization. Explicit calculations are performed for doped nanotubes and a rich structure in the real part of the low-frequency dielectric function is found when a magnetic field is applied along the cylinder axis. It is suggested that studies of can serve as a spectroscopic tool for the investigation of large ring-shaped or cylindrical molecules. Received 11 January 2000 and Received in final form 19 May 2000  相似文献   

20.
The zero temperature phase diagram of a one-dimensional ferromagnet with cubic single ion anisotropy in an external magnetic field is studied. The mean-field approximation and the density-matrix renormalization group method are applied. Two phases at finite magnetic fields are identified: a canted phase with spontaneously broken symmetry and a phase with magnetization along the magnetic field. Both methods predict that the canted phase exists even for the single-ion anisotropy strong enough to destroy the magnetic order at zero magnetic field. In contrast to the mean-field theory, the density-matrix renormalization group predicts a reentrant behavior for the model. The character of the phase transition at finite magnetic field has also been considered and the critical index has been found. Received 9 May 2000 and Received in final form 5 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号