首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dependences of the drag and lift coefficients of a magnetized sphere in a hypersonic rarefied plasma flow on the angle between the plasma flow velocity and the self-magnetic field induction vector of the body are obtained in a wide range of the ratio of the magnetic pressure to the plasma flow pressure. It is shown that changing the orientation of the magnetic field vector of the body and the incoming flow velocity can be used to control the dynamic interaction in the plasma–body system, namely, to decelerate and accelerate the magnetized sphere in a rarefied hypersonic plasma flow.  相似文献   

2.
The effects of an applied magnetic field on the steady, laminar, low speed plane Couette flow of a slightly rarefied and electrically conducting gas are studied. Consideration is given to the slip-flow regime, wherein the gas rarefaction begins to play its important role. The generally accepted method of analysis for slip flows is utilized, i.e. the continuum magnetohydrodynamic equations of motion are used throughout the gas, together with the first and the second order slip velocity and temperature jump boundary conditions. Considerations are further given to (1) the case of zero electric field and (2) the case of a nonconducting channel in which the net current across the channel is zero.  相似文献   

3.
V. A. Rykov 《Fluid Dynamics》1981,16(5):795-797
Slow flow of a rarefied gas over a nonuniformly heated plate is investigated numerically. The interaction of the oncoming stream with the flow due to the variable temperature of the gas near the body is considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 181–184, September–October, 1981.  相似文献   

4.
Summary The effects of a constant external magnetic field on the laminar, fully developed flow of an electrically conducting incompressible rarefied gas in a nonconducting parallel-plate channel are studied. Consideration is given to the slip-flow regime, wherein a gas velocity discontinuity occurs at the channel walls. It is found that the magnitude of the slip velocity is unaffected by the magnetic-field strength for a given pressure drop, but that the mean gas velocity and wall friction coefficient are functions of both the velocity slip coefficient and the magnetic-field strength. The effect of a second-order slip-flow boundary condition is briefly discussed.  相似文献   

5.
The problem of nonstationary magnetohydrodynamic flow of a viscous fluid in a half-space resulting from the motion of an infinite plate has received much attention. In [1], for example, solutions are presented for the case of isotropic conductivity, while in [2] a solution of the Rayleigh problem is offered for the case of anisotropic conductivity. In these instances the fluid was assumed incompressible and uniform, and the system of equations was found to be linear. In problems involving nonstationary flow of a gas in a transverse magnetic field resulting from the deceleration of a high-velocity gas flow at the boundary of a half-space or the motion of an infinite plate at supersonic speed relative to a stationary gas it becomes necessary to take into account the compressibility of the gas and the temperature dependence of the conductivity. It is then possible to have flows in which the gas becomes electrically conducting and begins to interact with the magnetic field solely as a result of the increase in temperature due to viscous dissipation of energy. The magnetic field, interacting with the conducting gas, exerts an effect on the drag and heat transfer to the surface of the plate. At sufficiently low gas pressures and strong magnetic fields a Hall effect may be observed. The system of equations describing the motion of a compressible gas with variable conductivity is essentially nonlinear. The present article is devoted to a study of such motions.  相似文献   

6.
Flow of a rarefied gas over a flat plate has been investigated numerically by a number of authors, using both the kinetic model equations (e.g., 1, 2]) and the Boltzmann equation [3, 6], In most cases a solution was found for a monatomic gas. The appreciable influence of the molecule structure on local and total aerodynamic characteristics and on the flow field over a flat plate at small angles of attack was noted in [1, 5, 7], where the authors examined various models for the rotational molecular degrees of freedom. In the present paper a two-point repulsion center model with constant collision cross section is used to investigate the influence of internal degrees of freedom of the molecule in flow over a plate, positioned parallel to (angle of attack = 0), and transverse to ( = 90 °) a rarefied gas stream. The data are compared with those calculated for a monatomic gas and from experimental results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 151–156, November–December, 1978.  相似文献   

7.
The character of flow over a body, structure of the perturbed zone, and flow resistance in a supersonic flow of rarefied partially ionized gas are determined by the intrinsic magnetic field and surface potential of the body. The effects of intrinsic magnetic field and surface potential were studied in [1–4]. There have been practically no experimental studies of the effect of intrinsic magnetic field on flow of a rarefied plasma. Studies of the effect of surface potential have been limited to the case R/d<50 [1, 3]; this is due to the difficulty of realization of flowover regimes at R/d>102 (where R is the characteristic dimension of the body and X is the Debye radius). At the same time R/d>102, the regime of flow over a large body, is of the greatest practical interest. The present study will consider the effect of potential and intrinsic magnetic field on resistance of a large (R/d>102) axisymmetric body (disk, sphere) in a supersonic flow of rarefied partially ionized gas.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 41–47, May–June, 1986.  相似文献   

8.
Parameters of a rarefied gas flow through a rack of flat plates aligned across the flow are studied by means of the joint numerical solution of the Boltzmann and Navier-Stokes equations. A subsonic flow regime is considered. The changes in flow characteristics are calculated as functions of the free-stream velocity and plate temperature. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 1, pp. 59–67, January–February, 2008.  相似文献   

9.
10.
An isothermal steady rarefied gas flow in a long channel (tube) of elliptical or rectangular cross-section under the action of a given pressure gradient (Poiseuille flow) is studied on the basis of the Bhatnagar-Gross-Krook model. The solution is obtained using a conservative higher-order method. The velocity field in a channel cross-section is investigated as a function of the rarefaction degree and the cross-section geometry parameters. The main calculated function is the gas flow rate through the tube. The solutions obtained are compared with the available results.  相似文献   

11.
The gasdynamic structure of a hypersonic molecular nitrogen flow in a plane channel whose opposite surfaces are segmented electrodes for generating a continuous surface glow discharge is investigated using a two-dimensional computational model. The electrodynamic structure of the surface glow discharge in the hypersonic rarefied gas flow (distributions of the charged particle concentrations, current density, and electric potential) is studied. A two-dimensional conjugate electrical-gasdynamic model consisting of the continuity, Navier-Stokes, and energy conservation equations and the chargedparticle continuity equations in the ambipolar approximation is proposed. The real thermophysical and transport properties of molecular nitrogen are taken into account. It is shown that using a surface glow discharge in a hypersonic rarefied gas flow makes it possible effectively to modify the shock-wave flow structure and hence to consider this type of discharge as additional tool for controlling rarefied gas flows.  相似文献   

12.
Several papers [1–4] have proposed approximate diffusion models which can be used to examine the transport process in a rarefied gas where the mean free path is large and transport is not determined by the local gradient of the particular quantity.In this paper the integral diffusion model [2] is used to solve the problem of determination of the friction stress and velocity of a flow of an incompressible gas around a plane semi-infinite plate in the whole range of Knudsen numbers. The obtained solution is compared with published solutions and experimental data [9].  相似文献   

13.
Summary Hydromagnetic flow of a viscous incompressible fluid due to uniformly accelerated motion of an infinite flat plate in the presence of a magnetic field fixed relative to the plate, is discussed. It is assumed that the induced magnetic field is negligible compared to the imposed magnetic field. It is observed under these conditions that the velocity at any point and at any instant decreases when the strength of the magnetic field is increased.  相似文献   

14.
Exact solutions for three canonical flow problems of a dipolar fluid are obtained: (i) The flow of a dipolar fluid due to a suddenly accelerated plate, (ii) The flow generated by periodic oscillation of a plate, (iii) The flow due to plate oscillation in the presence of a transverse magnetic field. The solutions of some interesting flows caused by an arbitrary velocity of the plate and of certain special oscillations are also obtained.  相似文献   

15.
 The combined effect of natural convection and uniform transverse magnetic field on the couette flow of an electrically conducting fluid between two parallel plates for impulsive motion of one of the plates in discussed. Under the assumption of negligible induced magnetic field and applied magnetic field being fixed relative to the fluid or plate, the governing equations have been solved exactly, and the expressions for velocity and temperature field have been presented for two different cases. A comparative study is made between the velocity field for magnetic field fixed with respect to plate and magnetic field fixed with respect to fluid. Received on 12 July 1999  相似文献   

16.
The fully developed flow of rarefied gases through circular ducts of concentric annular cross sections is solved via kinetic theory. The flow is due to an externally imposed pressure gradient in the longitudinal direction and it is simulated by the BGK kinetic equation, subject to Maxwell diffuse-specular boundary conditions. The approximate principal of the hydraulic diameter is investigated for first time in the field of rarefied gas dynamics. For the specific flow pattern, in addition to the flow rates, results are reported for the Poiseuille number and the exact hydraulic diameter. The corresponding parameters include the whole range of the Knudsen number and various values of the accommodation coefficient and the ratio of the inner over the outer radius. The accuracy of the results is validated in several ways, including the recovery of the analytical solutions at the hydrodynamic and free molecular limits.  相似文献   

17.
An experimental investigation was made of the gasdynamic structure of the initial section of supersonic jets of a plasma of argon and helium with outflow into a rarefied medium from a source of the magnetoplasmodynamic type. A study is made of the dependence of the gasdynamic structure on the kind of gas, the pressure in the surrounding medium, the inductance of the external magnetic field, the stagnation enthalpy, the mass flow rate, and the means used for feeding the gas.  相似文献   

18.
The laminar flow of a thin layer of heavy viscous magnetic liquid down an inclined wall is examined. The stability and control of the flow of an ordinary liquid are affected only by alteration of the angle of inclination of the solid wall and the velocity of the adjacent gas flow. When magnetic liquids are used [1, 2], an effective method of flow control may be control of the magnetic field. By using magnetic fields of various configurations it is possible to control the flow of a thin film of viscous liquid, modify the stability of laminar film flow, and change the shape of the free surface of the laminarly flowing thin film, a factor which plays a role in mass transfer, whose rate depends on the phase contact surface area. The magnetic field significantly affects the shape of the free surface of a magnetic liquid [3, 4]. In this paper the velocity profile of a layer of viscous magnetic liquid adjoining a gas flow and flowing down an inclined solid wall in a uniform magnetic field is found. It is shown that the flow can be controlled by the magnetic field. The problem of stability of the flow is solved in a linear formulation in which perturbations of the magnetic field are taken into account. The stability condition is found. The flow stability is affected by the nonuniform nature of the field and also by its direction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 59–65, September–October, 1977.  相似文献   

19.
An experimental technique for the diagnosis of rarefied ionized gases has been developed. The source of the ionized gas is formed by the region behind the reflected shock in a shock tube from which it is expanded through a nozzle. This flow is sampled by an adjustable skimmer forming a molecular beam. The velocity of the electrons on the centerline of the beam is analyzed in a magnetic field and registered by an electron multiplier. By sweeping the intensity of the field during the test time the whole range of the velocity distribution is scanned. The geometric dimensions of nozzle and skimmer together with the characteristic of the analyzer allow to neglect the divergence of the flow in the evaluation of the distribution. Comparisons of evaluated electron temperatures show good agreement with a theoretically predicted temperature decay in an expansion flow.  相似文献   

20.
An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented.A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy.The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity.The governing equations are solved by the perturbation technique and a numerical method.The analytical expressions for the velocity field,the temperature field,the induced magnetic field,the skin-friction,and the rate of heat transfer at the plate are obtained.The numerical results are demonstrated graphically for various values of the parameters involved in the problem.The effects of the Hartmann number,the chemical reaction parameter,the magnetic Prandtl number,and the other parameters involved in the velocity field,the temperature field,the concentration field,and the induced magnetic field from the plate to the fluid are discussed.An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values.The induced magnetic field along the x-direction increases with the increase in the Hartmann number,the magnetic Prandtl number,the heat source/sink,and the viscous dissipation.It is found that the flow velocity,the fluid temperature,and the induced magnetic field decrease with the increase in the destructive chemical reaction.Applications of the study arise in the thermal plasma reactor modelling,the electromagnetic induction,the magnetohydrodynamic transport phenomena in chromatographic systems,and the magnetic field control of materials processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号