首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an optimal homotopy-analysis approach is described by means of the nonlinear Blasius equation as an example. This optimal approach contains at most three convergence-control parameters and is computationally rather efficient. A new kind of averaged residual error is defined, which can be used to find the optimal convergence-control parameters much more efficiently. It is found that all optimal homotopy-analysis approaches greatly accelerate the convergence of series solution. And the optimal approaches with one or two unknown convergence-control parameters are strongly suggested. This optimal approach has general meanings and can be used to get fast convergent series solutions of different types of equations with strong nonlinearity.  相似文献   

2.
Determining whether a solution is of high quality (optimal or near optimal) is fundamental in optimization theory and algorithms. In this paper, we develop Monte Carlo sampling-based procedures for assessing solution quality in stochastic programs. Quality is defined via the optimality gap and our procedures' output is a confidence interval on this gap. We review a multiple-replications procedure that requires solution of, say, 30 optimization problems and then, we present a result that justifies a computationally simplified single-replication procedure that only requires solving one optimization problem. Even though the single replication procedure is computationally significantly less demanding, the resulting confidence interval might have low coverage probability for small sample sizes for some problems. We provide variants of this procedure that require two replications instead of one and that perform better empirically. We present computational results for a newsvendor problem and for two-stage stochastic linear programs from the literature. We also discuss when the procedures perform well and when they fail, and we propose using ɛ-optimal solutions to strengthen the performance of our procedures.  相似文献   

3.
The three-level explicit scheme is efficient for numerical approximation of the second-order wave equations. By employing a fourth-order accurate scheme to approximate the solution at first time level, it is shown that the discrete solution is conditionally convergent in the maximum norm with the convergence order of two. Since the asymptotic expansion of the difference solution consists of odd powers of the mesh parameters (time step and spacings), an unusual Richardson extrapolation formula is needed in promoting the second-order solution to fourth-order accuracy. Extensions of our technique to the classical ADI scheme also yield the maximum norm error estimate of the discrete solution and its extrapolation. Numerical experiments are presented to support our theoretical results.  相似文献   

4.
A conservative difference scheme is presented for two‐dimensional nonlinear Schrödinger equation with wave operator. The discrete energy method and an useful technique are used to analyze the difference scheme. It is shown, both theoretically and numerically, that the difference solution is conservative, unconditionally stable and convergent with second order in maximum norm. A numerical experiment indicates that the scheme is very effective. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 862–876, 2016  相似文献   

5.
In this paper, we propose an efficient numerical scheme for magnetohydrodynamics (MHD) equations. This scheme is based on a second order backward difference formula for time derivative terms, extrapolated treatments in linearization for nonlinear terms. Meanwhile, the mixed finite element method is used for spatial discretization. We present that the scheme is unconditionally convergent and energy stable with second order accuracy with respect to time step. The optimal L 2 and H 1 fully discrete error estimates for velocity, magnetic variable and pressure are also demonstrated. A series of numerical tests are carried out to confirm our theoretical results. In addition, the numerical experiments also show the proposed scheme outperforms the other classic second order schemes, such as Crank-Nicolson/Adams-Bashforth scheme, linearized Crank-Nicolson’s scheme and extrapolated Gear’s scheme, in solving high physical parameters MHD problems.  相似文献   

6.
The interior proximal extragradient method for solving equilibrium problems   总被引:1,自引:0,他引:1  
In this article we present a new and efficient method for solving equilibrium problems on polyhedra. The method is based on an interior-quadratic proximal term which replaces the usual quadratic proximal term. This leads to an interior proximal type algorithm. Each iteration consists in a prediction step followed by a correction step as in the extragradient method. In a first algorithm each of these steps is obtained by solving an unconstrained minimization problem, while in a second algorithm the correction step is replaced by an Armijo-backtracking linesearch followed by an hyperplane projection step. We prove that our algorithms are convergent under mild assumptions: pseudomonotonicity for the two algorithms and a Lipschitz property for the first one. Finally we present some numerical experiments to illustrate the behavior of the proposed algorithms.  相似文献   

7.
We construct an efficient hybrid numerical method for solving coupled systems of singularly perturbed linear parabolic problems of reaction-diffusion type. The discretization of the coupled system is based on the use of an additive or splitting scheme on a uniform mesh in time and a hybrid scheme on a layer-adapted mesh in space. It is proven that the developed numerical method is uniformly convergent of first order in time and third order in space. The purpose of the additive scheme is to decouple the components of the vector approximate solution at each time step and thus make the computation more efficient. The numerical results confirm the theoretical convergence result and illustrate the efficiency of the proposed strategy.  相似文献   

8.
During the last two decades, many heuristic procedures for the joint replenishment problem have appeared in the literature. The only available optimal solution procedure was based on an enumerative approach and was computationally prohibitive. In this paper we present an alternative optimal approach based on global optimisation theory. By applying Lipschitz optimisation one can find a solution with an arbitrarily small deviation from an optimal value. An efficient procedure is presented which uses a dynamic Lipschitz constant and generates a solution in little time. The running time of this procedure grows only linearly in the number of items.  相似文献   

9.
In this note we analyze a modified mixed finite element method for second‐order elliptic equations in divergence form. As a model we consider the Poisson problem with mixed boundary conditions in a polygonal domain of R 2. The Neumann (essential) condition is imposed here in a weak sense, which yields the introduction of a Lagrange multiplier given by the trace of the solution on the corresponding boundary. This approach allows to handle nonhomogeneous Neumann boundary conditions, theoretically and computationally, in an alternative and usually easier way. Then we utilize the classical Babu?ka‐Brezzi theory to show that the resulting mixed variational formulation is well posed. In addition, we use Raviart‐Thomas spaces to define the associated finite element method and, applying some elliptic regularity results, we prove the stability, unique solvability, and convergence of this discrete scheme, under appropriate assumptions on the mesh sizes. Finally, we provide numerical results illustrating the performance of the algorithm for smooth and singular problems. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 192–210, 2003  相似文献   

10.
Fully implicit schemes with second‐order time evolutions have been applied to simulate nonlinear diffusion problems precisely for a long time, but there is seldom theoretical study for either their convergence properties or efficient iterations. Here, a second‐order time evolution fully implicit scheme for two‐dimensional nonlinear divergence diffusion problem is analyzed. The unique existence of its solution is given. Two new methods are provided to prove its convergence, including entire inductive hypothesis reasoning and a two‐step reasoning process. Rigorous analysis shows the scheme is stable; its solution has second‐order convergence in both space and time to the exact solution of the problem. The convergence is applied to analyze a Newton iteration accelerating the computation and show its quadratic convergent speed and second‐order accuracy. The reasoning techniques also adapt to first‐order time accuracy schemes, and can be extended to analyze a wide class of nonlinear schemes for nonlinear problems. Numerical tests highlight the theoretical results and demonstrate the high performance of the algorithms. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 121–140, 2016  相似文献   

11.
This paper studies the single-job lot streaming problem in a two-stage hybrid flowshop that has m identical machines at the first stage and one machine at the second stage, to minimise the makespan. A setup time is considered before processing each sublot on a machine. For the problem with the number of sublots given, we prove that it is optimal to use a rotation method for allocating and sequencing the sublots on the machines. With such allocation and sequencing, the sublot sizes are then optimised using linear programming. We then consider the problem with equal sublot sizes and develop an efficient solution to determining the optimal number of sublots. Finally optimal and heuristic solution methods for the general problem are proposed and the worst-case performance of the equal-sublot solution is analysed. Computational results are also reported demonstrating the close-to-optimal performances of the heuristic methods in different problem settings.  相似文献   

12.
In solving a nonlinear equation by the use of a continuation method one of the crucial problems is the choice of the step sizes. We present a model for the total computational cost of a standard numerical continuation process and solve the problem of optimal step size control for this model. Using the theoretical results as a basis, we develop an adaptive step size algorithm for Newton's method. This procedure is computationally inexpensive and it gives quite satisfactory results compared to some other numerical experiments found in the literature.  相似文献   

13.
In this paper,we study a numerical solution of diffusion equation.We propose a three level-nine-point implicit difference scheme and prove the difference scheme is compatible with diffusion equation,second order convergent,unconditionally stable.A numerical experiments show,the difference scheme works well inside domain,but not near the discontinuous initial-boundary points,there are still has a vibration even though it was proved unconditionally stable theoretically.We take an action to solve the disturbance,give an Algorithm,Algorithm says,we must do some primal work at the discontinuous-initial-boundary points,then starting numerical solution according the three level-nine-point implicit difference scheme we proposed in this paper.The numerical example is done once again,and there is no disturbance or vibration,our Algorithm performed well all in domain and on the boundary points with small error and good accuracy,so the Algorithm we recommended is feasible and effective.  相似文献   

14.
We consider the approximation by multidimensional finite volume schemes of the transport of an initial measure by a Lipschitz flow. We first consider a scheme defined via characteristics, and we prove the convergence to the continuous solution, as the time step and the ratio of the space step to the time step tend to zero. We then consider a second finite volume scheme, obtained from the first one by addition of some uniform numerical viscosity. We prove that this scheme converges to the continuous solution, as the space step tends to zero, whereas the ratio of the space step to the time step remains bounded by below and by above, and under assumption of uniform regularity of the mesh. This is obtained via an improved discrete Sobolev inequality and a sharp weak BV estimate, under some additional assumptions on the transport flow. Examples show the optimality of these assumptions.  相似文献   

15.
Alternating direction implicit (ADI) schemes are computationally efficient and widely utilized for numerical approximation of the multidimensional parabolic equations. By using the discrete energy method, it is shown that the ADI solution is unconditionally convergent with the convergence order of two in the maximum norm. Considering an asymptotic expansion of the difference solution, we obtain a fourth‐order, in both time and space, approximation by one Richardson extrapolation. Extension of our technique to the higher‐order compact ADI schemes also yields the maximum norm error estimate of the discrete solution. And by one extrapolation, we obtain a sixth order accurate approximation when the time step is proportional to the squares of the spatial size. An numerical example is presented to support our theoretical results. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

16.
This paper addresses the problem of resource-constrained multi-project scheduling with variable-intensity activities. Four dynamic models, based on four types of precedence relations are presented to minimize dynamic earliness and tardiness of project activities. The first two models are designed to cope with start-to-end precedence relations via unit step functions and specially constructed penalty functions respectively. Conditions are derived for the case when an optimal solution of the second model with relaxed start-to-end precedence relations is the global optimal solution of the first model. The third and the fourth models are dealing with overlapping precedence relations based on a milestone approach and on start-to-start precedence relations with lags respectively. The relationship between the four models is studied and a lower bound on the objective function is proposed. An efficient time-decomposition approach is adopted for solving the last three models. This approach is used to guide an effective search for the solution of the first model.  相似文献   

17.
Two iterative algorithms are presented in this paper to solve the minimal norm least squares solution to a general linear matrix equations including the well-known Sylvester matrix equation and Lyapunov matrix equation as special cases. The first algorithm is based on the gradient based searching principle and the other one can be viewed as its dual form. Necessary and sufficient conditions for the step sizes in these two algorithms are proposed to guarantee the convergence of the algorithms for arbitrary initial conditions. Sufficient condition that is easy to compute is also given. Moreover, two methods are proposed to choose the optimal step sizes such that the convergence speeds of the algorithms are maximized. Between these two methods, the first one is to minimize the spectral radius of the iteration matrix and explicit expression for the optimal step size is obtained. The second method is to minimize the square sum of the F-norm of the error matrices produced by the algorithm and it is shown that the optimal step size exits uniquely and lies in an interval. Several numerical examples are given to illustrate the efficiency of the proposed approach.  相似文献   

18.
In this work we design and analyze an efficient numerical method to solve two dimensional initial-boundary value reaction–diffusion problems, for which the diffusion parameter can be very small with respect to the reaction term. The method is defined by combining the Peaceman and Rachford alternating direction method to discretize in time, together with a HODIE finite difference scheme constructed on a tailored mesh. We prove that the resulting scheme is ε-uniformly convergent of second order in time and of third order in spatial variables. Some numerical examples illustrate the efficiency of the method and the orders of uniform convergence proved theoretically. We also show that it is easy to avoid the well-known order reduction phenomenon, which is usually produced in the time integration process when the boundary conditions are time dependent. This research has been partially supported by the project MEC/FEDER MTM2004-01905 and the Diputación General de Aragón.  相似文献   

19.
This paper is devoted to developing an Il'in‐Allen‐Southwell (IAS) parameter‐uniform difference scheme on uniform meshes for solving strongly coupled systems of singularly perturbed convection‐diffusion equations whose solutions may display boundary and/or interior layers, where strong coupling means that the solution components in the system are coupled together mainly through their first derivatives. By decomposing the coefficient matrix of convection term into the Jordan canonical form, we first construct an IAS scheme for 1D systems and then extend the scheme to 2D systems by employing an alternating direction technique. The robustness of the developed IAS scheme is illustrated through a series of numerical examples, including the magnetohydrodynamic duct flow problem with a high Hartmann number. Numerical evidence indicates that the IAS scheme appears to be formally second‐order accurate in the sense that it is second‐order convergent when the perturbation parameter ϵ is not too small and when ϵ is sufficiently small, the scheme is first‐order convergent in the discrete maximum norm uniformly in ϵ.  相似文献   

20.
In this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the application of trust-region methods to the solution of a class of nonlinear optimization problems where the constrained set is closed and convex (and, from a practical point of view, where projecting onto the feasible region is computationally affordable). We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of the corresponding trust-region subproblems. One is able to prove that the resulting scheme is globally convergent to first-order stationary points. The theory requires the use of exact second-order derivatives but, in turn, the computation of the trust-region step asks only for one projection onto the feasible region (in comparison to the calculation of the generalized Cauchy point which may require more). The numerical efficiency and robustness of the proposed new scheme when applied to bound-constrained problems is measured by comparing its performance against some of the current state-of-the-art nonlinear programming solvers on a vast collection of test problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号