首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
 The effect of a low-molecular-weight physically adsorbed poly(ethylene oxide) on the rheological behavior of aqueous dispersions of silica particles (as a model system) has been investigated. Particular attention is given to the evolution of the rheological behavior with increasing polymer concentration in the system at different volume fractions of the particles. Experiments were performed in the absence of salt and just the pH of the dispersion was adjusted to 9.5, a condition at which the system is electrostatically stable and electrostatic repulsive forces are long range in nature. It was observed that the shear viscosity and the linear viscoelastic functions of the dispersion at 55 vol% increase initially through the addition of polymer, reach a maximum, and then decrease to a minimum with further addition of polymer to the system. At higher polymer concentrations, there may be an increase in the viscosity of the dispersion owing to an increase in the concentration of free polymer chains in the medium causing depletion flocculation in the system. The increase in the rheological behavior of the dispersion at low polymer coverage is attributed to polymer bridging flocculation caused by a low-molecular-weight poly(ethylene oxide) in the system. Comparison of the data given here with the results of earlier studies on the viscosity behavior of the system in the presence of salt (0.01 M) indicates that the range of the electrostatic repulsion has a significant role in the rheological behavior of the system. Received: 7 February 2001 Accepted: 18 October 2001  相似文献   

3.
Ferritin stores and releases iron ions in mammals. It is globally important as a drug nanocarrier. This is because of its unique hollow-spherical structure, desirable stability and biological properties. Novel drug-loading approaches plus various functionalization approaches have been developed to improve ferritin in response to differing demands in disease treatments. Here, we critically review ferritin drug delivery and evaluate its diverse drug-loading and functionalization approaches, we: (1) Introduce basic structural and property information related to ferritin as a drug nanocarrier; (2) Contrast in detail the different means to load drugs and the selection of drug loading means; (3) Discuss multiple ferritin functionalization approaches, together with related advantages and potential risks; and, (4) Compare ferritin with alternative, commonly-used drug nanocarriers. We conclude that despite that no drugs based on ferritin are commercially available, the market potential for it is significant, and evaluate future research directions. Findings from this work will be of immediate benefit and interest to a wide range of researchers and manufacturers for drug delivery using ferritin.  相似文献   

4.
The rheological properties for the blends of polystyrene and polybutadiene were investigated and the effect of compatibilizer styrene butadiene rubber (SBR), on the blends were studied and the results compared with the non-compatibilized blends. The frequency sweep, step shear strain and shear stress growth experiments were carried out for the blends. The results showed that with addition of compatibilizer the changes in behavior of the rheological properties of blends are observed. These rheological variations could be related to the reduction of interfacial tension and size of dispersed phase. Furthermore, the validity of Doi–Ohta scaling relationship in double start-up experiments was studied. It is shown that this scaling relationship becomes more reliable with increasing the amount of PB and compatibilizer.  相似文献   

5.
In the present paper, based on the conservation law of mass and momentum for ion and electron, the distribution of velocity, density of ions and electrons along radial direction are solved numerically. Furthermore, the comparison between MHD properties of ambipolar and quasi-ambipolar diffusion is made. The numerical calculation is carried out for argon plasma. The results show that the ion density, ratio of ion and electron velocity at the cathode sheath boundary surface increase with the intensity of magnetic induction, meanwhile, the distance between sheaths decreases as well as the radial velocity of ion and electron at the anode sheath boundary. The ion density varies in accord with experiment qualitatively[1]. All parameters mentioned above are not sensitive to magnetic field in ambipolar diffusion.  相似文献   

6.
Summary  The thermal instability of a Rivlin–Ericksen fluid in a porous medium is considered in the presence of a uniform vertical magnetic field to include the effect of Hall currents. For the case of stationary convection, the magnetic field has a stabilizing effect on the system, whereas the Hall current has a destabilizing effect on the system. The medium permeability has both stabilizing and destabilizing effects, depending on the Hall parameter M. The kinematic viscoelasticity has no effect on stationary convection. Graphs have been plotted by giving numerical values to the parameters, to depict the stability characteristics. The magnetic field (and corresponding Hall currents) introduces oscillatory modes in the system, which would be nonexistent in their absence. The sufficient conditions for the nonexistence of overstability are also obtained. Received 20 May 1999; accepted for publication 8 March 2000  相似文献   

7.
8.
Low-viscosity micellar aqueous solutions of cetyltrimethylammonium bromide (CTAB) undergo a major change in the presence of the hydrotrope, potassium 1-phenylmethylsulfate (KPhMS), producing a highly viscoelastic entanglement network of polymer-like micelles. The system studied here shows typical shear banding flow behavior, which tends to disappear with increasing the hydrotrope-to-surfactant concentration ratio (C H / C S). The linear rheological response was analyzed with the model of Granek–Cates, whereas the nonlinear behavior was reproduced with the Bautista–Manero–Puig (BMP) model. Both models introduce a kinetic equation to account for the breaking and reformation of the micelles, and they predict the linear and nonlinear rheological data very well. This paper was presented at Annual European Rheology Conference (AERC) held in Hersonisos, Crete, Greece, April 27–29, 2006.  相似文献   

9.
A mathematical model of mechanics of a two-velocity and two-temperature mixture of gases is developed. Based on this model, the evolution of the mixing layer of two gases of different densities, which are accelerated by a compression wave, is considered by methods of numerical simulation. A solution of an initial-boundary problem is obtained in a one-dimensional approximation. This solution describes the formation of a diffusion layer between the two gases. The problem of interaction of this layer with the compression wave, the heavy medium being accelerated by the light medium, is solved numerically. Problems of instability development in a sine-perturbed mixing layer accelerated by a compression wave are solved numerically in a two-dimensional unsteady formulation. The calculated width of the mixing region is in reasonable agreement with experimental data.  相似文献   

10.
The effects of both horizontal and vertical hydrodynamic, thermal and solutal heterogeneity, on the onset of convection in a horizontal layer of a saturated porous medium uniformly heated from below, are studied analytically using linear stability theory for the case of weak heterogeneity. The Brinkman model is employed. It is found that the effect of such heterogeneity on the critical value of the Rayleigh number Ra based on mean properties is of second order if the properties vary in a piecewise constant or linear fashion. The effects of horizontal heterogeneity and vertical heterogeneity are then comparable once the aspect ratio is taken into account, and to a first approximation are independent.  相似文献   

11.
This paper presents a study of a three-parameter unfolding of a degenerate case in the Hopf--saddle-node singularity. This analysis shows that this nonlinear degeneracy is a source of interesting bifurcations of periodic orbits as well as global bifurcations of equilibria. The results achieved are applied to the study of a simple autonomous electronic circuit, which has just only one nonlinearity. The numerical results include the analysis of interesting resonance behaviors.  相似文献   

12.
The kinetically driven growth instability in stressed solids has been a subject of recent investigation as there is an increasing interest in the effects of non-hydrostatic stresses on crystal growth processes. Recent experimental and modeling work using advanced numerical methods such as boundary element and level set methods have demonstrated that the effect of stress on the solid phase epitaxy (SPE) growth of crystalline silicon from the amorphous phase is responsible for the roughening of its amorphous–crystalline interface. Although our previous model (Phan et al., in Model Simul Mater Sci Eng, 9:309–325, 2001) has been able to explain the observed interfacial instability during the crystal growth of intrinsic silicon, it has not been very successful when extended to the SPE growth process of doped silicon. In an effort to identify the sources that may improve the accuracy and robustness of the previously proposed model, we present in this paper a new approach for modeling the crystal growth in stressed Si layers. The technique is based upon the coupling of a transition-state-theory-based model, a finite element model of the sequentially weak coupling analysis for fluid-solid interaction, and the marker particle method.  相似文献   

13.
The influence of medium viscosity on the onset of shear thickening of silica dispersions is investigated with two different methods. In the first method, the sample temperature is varied over a narrow range for two different suspensions. For the first suspension, the stress at the onset of shear thickening, or the critical stress, was found to be independent of sample viscosity, and the shear viscosity scaled with Peclet number, as expected. The critical stress for the second suspension was not independent of sample viscosity, and the Peclet number scaling was only moderately successful. The differences were attributed to changes in particle interactions with temperature. In the second method, the molecular weight of an oligomeric silicone oil medium is varied. In principle, this method should maintain constant chemical interactions as medium viscosity varies; however the polymer is found to adsorb onto the silica surface and delay shear thickening to higher stresses with increasing molecular weight. The critical stress for the highest molecular weight systems, which is highly dependent on particle loading, overlays with an effective volume fraction based on the hydrodynamic diameter of the polymer-stabilized colloids. The results of both methods suggest that if all other properties of the dispersion are held constant, critical stress is independent of medium viscosity.  相似文献   

14.
The stability of the phase interface in geothermal systems is considered in the isothermal approximation with allowance for capillary effects. The dispersion relation is obtained and the domains of stability and instability of steady-state vertical flows are found. Possible types of transition to instability, namely, transitions with the most unstable mode corresponding to zero and infinite wavenumbers or to all wavenumbers simultaneously, are described. In the first case the nonlinear Kolmogorov-Petrovskii-Piskunov equation describing the evolution of a narrow strip of weakly unstable modes on the stability threshold is derived. The effect of the parameters of the system on its stability is investigated.  相似文献   

15.
Flow in a three-layer channel is modeled analytically. The channel consists of a transition layer sandwiched between a porous medium and a fluid clear of solid material. Within the transition layer, the reciprocal of the permeability varies linearly across the channel. The Brinkman model is used for the momentum equations for the porous medium layer and the transition layer. The velocity profile is obtained in closed form in terms of Airy, exponential, and polynomial functions. The overall volume flux and boundary friction factors are calculated and compared with values obtained with a two-layer model employing the Beavers–Joseph condition at the interface between a Darcy porous medium and a clear fluid.  相似文献   

16.
The problem of convection, diffusion and reaction inside a spherical porous pellet is investigated analytically. Unsteady Stokes equation is used for the flow outside the porous pellet and Darcy’s law is used inside the pellet. A solenoidal decomposition method is employed for the hydrodynamic problem. Following the above findings, the convection–diffusion–reaction problem is formulated and solved analytically for a first order reaction. The behavior of the nutrient transport is discussed with respect to various parameters like Darcy number, Peclet number, frequency and Thiele modulus. Also the effectiveness factor corresponding to the first order reaction is computed.  相似文献   

17.
The optical evolution of the band texture occurring in acetoxypropylcellulose thermotropic polymer has been investigated as a function of temperature and primary shear rate. Two distinct kinds of band texture were observed which are referred to here as the `fast' and `slow' band textures with regard to their rate of evolution. The fast band texture appears very quickly following the cessation of shear and then disappears. The slow band texture is much finer than the fast band texture and appears to exist both during and after the appearance of the fast band texture. The evolution behaviour of the fast band texture is interpreted in terms of the shifting of a three-region evolution curve. Particular attention has been paid to investigating the influence of temperature on the formation of the fast band texture. Rheo-optical experiments show that the minimum shear rate required to form the fast band texture increases as a power-law function of the temperature. By subsequently performing steady flow measurements over a range of temperatures, the minimum shear stress required to form the fast band texture has been found to be independent of temperature and to increase linearly with the molecular weight of the sample. Results obtained from dynamic tests are compared with similar tests conducted previously on a lyotropic hydroxypropylcellulose water solution (Harrison and Navard 1999). The results of the comparison provide evidence in support of a connection between the behaviour of the dynamic functions and the optical evolution of the slow band texture. These results suggest that nematic and cholesteric fluids can relax through several different possible mechanisms, each of which results in a periodic band texture following the cessation of shear. Received: 2 March 1999/Accepted: 26 July 1999  相似文献   

18.
王星耀  霍永忠 《力学季刊》2005,26(3):377-380
材料发生相变的过程中会出现失稳、滞后回线及多界面的微结构等复杂现象,而稳定性的丧失使其动力学方程的求解十分困难。对于形状记忆合金中的马氏体相变,相变过程中材料的等效杨氏模量变为负值,使得传统的动力学方程成为病态的,无法直接求解,必须要进行正则化。而相变的滞后回线与微结构的出现也说明经典的弹性理论不再适用,必须要引入新的能量项以能刻画这些现象。本文在非线性弹性理论的框架下,引入应变梯度界面能和位移非均匀能,利用变分原理建立了材料相变的一维动力学模型。高阶项的引入极大地改善了方程的性质,使数值求解成为可能。计算结果表明,该模型确能较有效地描述相变时的失稳与微结构。  相似文献   

19.
Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered.  相似文献   

20.
Numerical modeling of the single-phase Stefan problem in a semitransparent layer with transparent, nonabsorbing, and partially radiation-absorbing boundaries is performed. It is shown that at low temperatures of the medium, convection is a determining factor on the boundary of the irradiated sample, and at high temperatures, radiation is predominant. The absence of absorption on the boundaries of the layer leads to acceleration of the heating of the plate and considerable deceleration of melting processes. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 84–91, May–June, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号