首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we deal with global convergence of the affine scaling algorithm for strictly convex QP problems satisfying a dual nondegeneracy condition. By means of the local Karmarkar potential function which was successfully applied to demonstrate global convergence of the affine scaling algorithm for LP, we show global convergence of the algorithm when the step-size 1/8 is adopted without requiring any primal nondegeneracy condition.This paper was presented at the 14th International Symposium on Mathematical Programming, held August 5–9, 1991, in Amsterdam, The Netherlands.  相似文献   

2.
We develop and analyze a new affine scaling Levenberg–Marquardt method with nonmonotonic interior backtracking line search technique for solving bound-constrained semismooth equations under local error bound conditions. The affine scaling Levenberg–Marquardt equation is based on a minimization of the squared Euclidean norm of linear model adding a quadratic affine scaling matrix to find a solution that belongs to the bounded constraints on variable. The global convergence results are developed in a very general setting of computing trial directions by a semismooth Levenberg–Marquardt method where a backtracking line search technique projects trial steps onto the feasible interior set. We establish that close to the solution set the affine scaling interior Levenberg–Marquardt algorithm is shown to converge locally Q-superlinearly depending on the quality of the semismooth and Levenberg–Marquardt parameter under an error bound assumption that is much weaker than the standard nonsingularity condition, that is, BD-regular condition under nonsmooth case. A nonmonotonic criterion should bring about speed up the convergence progress in the contours of objective function with large curvature.  相似文献   

3.
Recently an affine scaling, interior point algorithm ASL was developed for box constrained optimization problems with a single linear constraint (Gonzalez-Lima et al., SIAM J. Optim. 21:361–390, 2011). This note extends the algorithm to handle more general polyhedral constraints. With a line search, the resulting algorithm ASP maintains the global and R-linear convergence properties of ASL. In addition, it is shown that the unit step version of the algorithm (without line search) is locally R-linearly convergent at a nondegenerate local minimizer where the second-order sufficient optimality conditions hold. For a quadratic objective function, a sublinear convergence property is obtained without assuming either nondegeneracy or the second-order sufficient optimality conditions.  相似文献   

4.
In this paper we extend and improve the classical affine scaling interior-point Newton method for solving nonlinear optimization subject to linear inequality constraints in the absence of the strict complementarity assumption. Introducing a computationally efficient technique and employing an identification function for the definition of the new affine scaling matrix, we propose and analyze a new affine scaling interior-point Newton method which improves the Coleman and Li affine sealing matrix in [2] for solving the linear inequlity constrained optimization. Local superlinear and quadratical convergence of the proposed algorithm is established under the strong second order sufficiency condition without assuming strict complementarity of the solution.  相似文献   

5.
In this paper, we propose a continuation method for box constrained variational inequality problems. The continuation method is based on the class of Gabriel-Moré smooth functions and has the following attractive features: It can start from any point; It has a simple and natural neighborhood definition; It solves only one approximate Newton equation at each iteration; It converges globally linearly and locally quadratically under nondegeneracy assumption at the solution point and other suitable assumptions. A hybrid method is also presented, which is shown to preserve the above convergence properties without the nondegeneracy assumption at the solution point. In particular, the hybrid method converges finitely for affine problems.  相似文献   

6.
We extend the classical affine scaling interior trust region algorithm for the linear constrained smooth minimization problem to the nonsmooth case where the gradient of objective function is only locally Lipschitzian. We propose and analyze a new affine scaling trust-region method in association with nonmonotonic interior backtracking line search technique for solving the linear constrained LC1 optimization where the second-order derivative of the objective function is explicitly required to be locally Lipschitzian. The general trust region subproblem in the proposed algorithm is defined by minimizing an augmented affine scaling quadratic model which requires both first and second order information of the objective function subject only to an affine scaling ellipsoidal constraint in a null subspace of the augmented equality constraints. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions where twice smoothness of the objective function is not required. Applications of the algorithm to some nonsmooth optimization problems are discussed.  相似文献   

7.
We study a trust region affine scaling algorithm for solving the linearly constrained convex or concave programming problem. Under primal nondegeneracy assumption, we prove that every accumulation point of the sequence generated by the algorithm satisfies the first order necessary condition for optimality of the problem. For a special class of convex or concave functions satisfying a certain invariance condition on their Hessians, it is shown that the sequences of iterates and objective function values generated by the algorithm convergeR-linearly andQ-linearly, respectively. Moreover, under primal nondegeneracy and for this class of objective functions, it is shown that the limit point of the sequence of iterates satisfies the first and second order necessary conditions for optimality of the problem. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.The work of these authors was based on research supported by the National Science Foundation under grant INT-9600343 and the Office of Naval Research under grants N00014-93-1-0234 and N00014-94-1-0340.  相似文献   

8.
Recently, Ye, Tapia and Zhang (1991) demonstrated that Mizuno—Todd—Ye's predictor—corrector interior-point algorithm for linear programming maintains the O( L)-iteration complexity while exhibiting superlinear convergence of the duality gap to zero under the assumption that the iteration sequence converges, and quadratic convergence of the duality gap to zero under the assumption of nondegeneracy. In this paper we establish the quadratic convergence result without any assumption concerning the convergence of the iteration sequence or nondegeneracy. This surprising result, to our knowledge, is the first instance of a demonstration of polynomiality and superlinear (or quadratic) convergence for an interior-point algorithm which does not assume the convergence of the iteration sequence or nondegeneracy.Supported in part by NSF Grant DDM-8922636 and NSF Coop. Agr. No. CCR-8809615, the Iowa Business School Summer Grant, and the Interdisciplinary Research Grant of the University of Iowa Center for Advanced Studies.Supported in part by NSF Coop. Agr. No. CCR-8809615, AFOSR 89-0363, DOE DEFG05-86ER25017 and ARO 9DAAL03-90-G-0093.Supported in part by NSF Grant DMS-9102761 and DOE Grant DE-FG05-91ER25100.  相似文献   

9.
In this paper we give a new convergence analysis of a projective scaling algorithm. We consider a long-step affine scaling algorithm applied to a homogeneous linear programming problem obtained from the original linear programming problem. This algorithm takes a fixed fraction λ≤2/3 of the way towards the boundary of the nonnegative orthant at each iteration. The iteration sequence for the original problem is obtained by pulling back the homogeneous iterates onto the original feasible region with a conical projection, which generates the same search direction as the original projective scaling algorithm at each iterate. The recent convergence results for the long-step affine scaling algorithm by the authors are applied to this algorithm to obtain some convergence results on the projective scaling algorithm. Specifically, we will show (i) polynomiality of the algorithm with complexities of O(nL) and O(n 2 L) iterations for λ<2/3 and λ=2/3, respectively; (ii) global covnergence of the algorithm when the optimal face is unbounded; (iii) convergence of the primal iterates to a relative interior point of the optimal face; (iv) convergence of the dual estimates to the analytic center of the dual optimal face; and (v) convergence of the reduction rate of the objective function value to 1−λ.  相似文献   

10.
Based on a differentiable merit function proposed by Taji et al. in "Math. Prog. Stud., 58, 1993, 369-383", the authors propose an affine scaling interior trust region strategy via optimal path to modify Newton method for the strictly monotone variational inequality problem subject to linear equality and inequality constraints. By using the eigensystem decomposition and affine scaling mapping, the authors form an affine scaling optimal curvilinear path very easily in order to approximately solve the trust region subproblem. Theoretical analysis is given which shows that the proposed algorithm is globally convergent and has a local quadratic convergence rate under some reasonable conditions.  相似文献   

11.
In this paper, we propose a new affine scaling trust-region algorithm in association with nonmonotonic interior backtracking line search technique for solving nonlinear equality systems subject to bounds on variables. The trust-region subproblem is defined by minimizing a squared Euclidean norm of linear model adding the augmented quadratic affine scaling term subject only to an ellipsoidal constraint. By using both trust-region strategy and interior backtracking line search technique, each iterate switches to backtracking step generated by the general trust-region subproblem and satisfies strict interior point feasibility by line search backtracking technique. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases. The results of numerical experiments are reported to show the effectiveness of the proposed algorithm.  相似文献   

12.
A family of interior point algorithms for solving linear programs is examined. Under the assumption on the nondegeneracy of the problem, a theoretical justification of these algorithms is given. The sets of the algorithms converging to relatively interior optimal solutions and having linear or superlinear convergence rate are identified.  相似文献   

13.
We describe an interior-point algorithm for monotone linear complementarity problems in which primal-dual affine scaling is used to generate the search directions. The algorithm is shown to have global and superlinear convergence with Q-order up to (but not including) two. The technique is shown to be consistent with a potential-reduction algorithm, yielding the first potential-reduction algorithm that is both globally and superlinearly convergent.Corresponding author. The work of this author was based on research supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.The work of this author was based on research supported by the National Science Foundation under grant DDM-9109404 and the Office of Naval Research under grant N00014-93-1-0234. This work was done while the author was a faculty member of the Systems and Industrial Engineering Department at the University of Arizona.  相似文献   

14.
The circular cone programming (CCP) problem is to minimize or maximize a linear function over the intersection of an affine space with the Cartesian product of circular cones. In this paper, we study nondegeneracy and strict complementarity for the CCP, and present a nonmonotone smoothing Newton method for solving the CCP. We reformulate the CCP as a second-order cone programming (SOCP) problem using the algebraic relation between the circular cone and the second-order cone. Then based on a one parametric class of smoothing functions for the SOCP, a smoothing Newton method is developed for the CCP by adopting a new nonmonotone line search scheme. Without restrictions regarding its starting point, our algorithm solves one linear system of equations approximately and performs one line search at each iteration. Under mild assumptions, our algorithm is shown to possess global and local quadratic convergence properties. Some preliminary numerical results illustrate that our nonmonotone smoothing Newton method is promising for solving the CCP.  相似文献   

15.
Consider linear programs in dual standard form with n constraints and m variables. When typical interior-point algorithms are used for the solution of such problems, updating the iterates, using direct methods for solving the linear systems and assuming a dense constraint matrix A, requires O(nm2)\mathcal{O}(nm^{2}) operations per iteration. When nm it is often the case that at each iteration most of the constraints are not very relevant for the construction of a good update and could be ignored to achieve computational savings. This idea was considered in the 1990s by Dantzig and Ye, Tone, Kaliski and Ye, den Hertog et al. and others. More recently, Tits et al. proposed a simple “constraint-reduction” scheme and proved global and local quadratic convergence for a dual-feasible primal-dual affine-scaling method modified according to that scheme. In the present work, similar convergence results are proved for a dual-feasible constraint-reduced variant of Mehrotra’s predictor-corrector algorithm, under less restrictive nondegeneracy assumptions. These stronger results extend to primal-dual affine scaling as a limiting case. Promising numerical results are reported.  相似文献   

16.
Traditional inexact SQP algorithm can only solve equality constrained optimization (Byrd et al. Math. Program. 122, 273–299 2010). In this paper, we propose a new inexact SQP algorithm with affine scaling technique for nonlinear systems of mixed equalities and inequalities, which arise in complementarity and variational inequalities. The nonlinear systems are transformed into a special nonlinear optimization with equality and bound constraints, and then we give a new inexact SQP algorithm for solving it. The new algorithm equipped with affine scaling technique does not require a quadratic programming subproblem with inequality constraints. The search direction is computed by solving one linear system approximately using iterative linear algebra techniques. Under mild assumptions, we discuss the global convergence. The preliminary numerical results show the effectiveness of the proposed algorithm.  相似文献   

17.
一类非单调线性互补问题的高阶仿射尺度算法   总被引:7,自引:0,他引:7  
In this paper, a new interior point algorithm-high-order atone scaling for a class of nonmonotonic linear complementary problems is developed. On the basis of idea of primal-dual affine scaling method for linear programming , the search direction of our algorithm is obtained by a linear system of equation at each step . We show that, by appropriately choosing the step size, the algorithm has polynomial time complexity. We also give the numberical results of the algorithm for two test problems.  相似文献   

18.
We develop and analyze an affine scaling inexact generalized Newton algorithm in association with nonmonotone interior backtracking line technique for solving systems of semismooth equations subject to bounds on variables. By combining inexact affine scaling generalized Newton with interior backtracking line search technique, each iterate switches to inexact generalized Newton backtracking step to strict interior point feasibility. The global convergence results are developed in a very general setting of computing trial steps by the affine scaling generalized Newton-like method that is augmented by an interior backtracking line search technique projection onto the feasible set. Under some reasonable conditions we establish that close to a regular solution the inexact generalized Newton method is shown to converge locally p-order q-superlinearly. We characterize the order of local convergence based on convergence behavior of the quality of the approximate subdifferentials and indicate how to choose an inexact forcing sequence which preserves the rapid convergence of the proposed algorithm. A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases.  相似文献   

19.
张明望 《数学杂志》2004,24(5):585-590
对于一类非单调线性互补问题提出了一个新算法:高阶Dikin型仿射尺度算法,算法的每步迭代.基于线性规划Dikin原始-对偶算法思想来求解一个线性方程组得到迭代方向,再适当选取步长,得到了算法的多项式复杂性。  相似文献   

20.
提供了一种新的非单调内点回代线搜索技术的仿射内点信赖域方法解线性不等式约束的广义非线性互补问题(GCP).基于广义互补问题构成的半光滑方程组的广义Jacobian矩阵,算法使用l2范数作为半光滑方程组的势函数,形成的信赖域子问题为一个带椭球约束的线性化的二次模型.利用广义牛顿方程计算试探迭代步,通过内点映射回代技术确保迭代点是严格内点,保证了算法的整体收敛性.在合理的条件下,证明了信赖域算法在接近最优点时可转化为广义拟牛顿步,进而具有局部超线性收敛速率.非单调技术将克服高度非线性情况加速收敛进展.最后,数值结果表明了算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号