首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colistin is a potent peptide antibiotic that is effective against Gram-negative bacteria. However, nephrotoxicity limited its clinical use. Silver nanoparticles (AgNPs) have gained attention as a potential antimicrobial agent and nanodrug carrier. The conjugation of antibiotics and AgNPs has been found to increase the activity and decrease drug toxicity. In this study, colistin was conjugated with AgNPs (Col-AgNPs), which was confirmed by Fourier-transform infrared (FT-IR) and energy-dispersive X-ray (EDX) spectra. The optimized Col-AgNPs had the proper characteristics, including spherical shape, monodispersity, nanosized particle, high surface charge, and good stability. The powder X-ray diffraction (PXRD) pattern supported the crystallinity of Col-AgNPs and AgNPs. The drug loading of Col-AgNPs was 11.55 ± 0.93%. Col-AgNPs had higher activity against Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) than AgNPs and colistin. The mechanism of actions of Col-AgNPs involved membrane disruption and genomic DNA damage. The Col-AgNPs and AgNPs were biocompatible with human red blood cells and renal cells at concentrations up to 16 µg/mL. Interestingly, Col-AgNPs exhibited higher cell survival than AgNPs and colistin at 32 µg/mL. Our results revealed that the Col-AgNPs could enhance the antimicrobial activity and cell biocompatibility more than colistin and AgNPs.  相似文献   

2.
Core–shell structured Fe3O4/SiO2/TiO2 nanocomposites with enhanced photocatalytic activity that are capable of fast magnetic separation have been successfully synthesized by combining two steps of a sol–gel process with calcination. The as‐obtained core–shell structure is composed of a central magnetite core with a strong response to external fields, an interlayer of SiO2, and an outer layer of TiO2 nanocrystals with a tunable average size. The convenient control over the size and crystallinity of the TiO2 nanocatalysts makes it possible to achieve higher photocatalytic efficiency than that of commercial photocatalyst Degussa P25. The photocatalytic activity increases as the thickness of the TiO2 nanocrystal shell decreases. The presence of SiO2 interlayer helps to enhance the photocatalytic efficiency of the TiO2 nanocrystal shell as well as the chemical and thermal stability of Fe3O4 core. In addition, the TiO2 nanocrystals strongly adhere to the magnetic supports through covalent bonds. We demonstrate that this photocatalyst can be easily recycled by applying an external magnetic field while maintaining their photocatalytic activity during at least eighteen cycles of use.  相似文献   

3.
BiOCl as a two‐dimensional layer ternary oxide semiconductor, has been widely used in energy and environmental area due to its non‐toxicity, price and the good photocatalytic performance. However, BiOCl has a wide bandgap and can only absorb ultraviolet light, which limits its solar energy conversion efficiency for practical application. Herein, we report a facile synthesis of FeOOH/BiOCl nanocomposites by hydrothermal method. The results of XPS and FT‐IR indicated that FeOOH has been loaded on the nanocomposites. The chemical and optical properties of the nanocomposite are well‐characterized. The nanocomposite showed much more excellent photocatalytic performance compared with the individual FeOOH and BiOCl single component. Reactive specie trapping experiment indicated that · O2– and h+ were the two main active species during the photocatalytic process of FeOOH/BiOCl nanocomposites.  相似文献   

4.
Summary: The silver coating of polymers has been intensively investigated in the last few decades as an effective non‐resistance‐inducing strategy to prevent medical device‐related infections. We have developed a completely new approach to incorporate silver ions in polymers by the synthesis of a carboxylated polyurethane able to coordinate Ag+. The obtained polymers possess mechanical properties suitable for the development of medical devices, without any risk of loss of activity. To minimize the risk of increasing antibiotic resistance, the metal ion‐containing polymers are loaded with ciprofloxacin, which possesses a different mechanism of antimicrobial action, thus a system able to inhibit Staphylococcus epidermidis and Pseudomonas aeruginosa growth for at least one month is developed.

SEM images showing a mature S. epidermidis biofilm on the surface of the carboxylated polyurethane (left) and the surface of the silver ion‐containing polyurethane free from bacterial colonization (right) after 48 h of incubation.  相似文献   


5.
Theoretical and Experimental Chemistry - It was shown that interaction of photoreduced octamolybdate amine complexes of nickel(II) and copper(II) with silver(I) nitrate in aqueous solutions leads...  相似文献   

6.
综述了磷酸银复合材料在化学及相关领域的研究,主要集中在光催化降解污染物、环境药物、杀菌消毒和光解水等方面。光催化在降解污染物方面,尤其是在降解有机染料方面表现突出,如罗丹明B溶液、亚甲基蓝溶液等;光催化降解环境药物方面,磷酸银复合材料对阿拉特津、甲磺酸吉米沙星等药物的降解率可达到90%以上;抗菌性能方面,磷酸银对大肠杆菌有较强的抑制作用,对金黄色葡萄球菌也有一定的抑制作用。简单说明了磷酸银光催化的原理,磷酸银带隙较窄,价电子激发后产生光生电子-空穴对,光生空穴具有强氧化性,光生电子则具有强还原性,迁移到磷酸银的表面后,参与物质的氧化还原反应。最后对磷酸银的改进方法和发展前景进行了总结。  相似文献   

7.
Russian Journal of General Chemistry - Specific features of the synthesis of stable silver nanoparticles by chemical reduction with agents differing in the reducing ability were studied using...  相似文献   

8.
Nanotechnology is expected to open some new aspects to fight and prevent diseases using atomic-scale tailoring of materials. The main aim of this study is to biosynthesize silver nanoparticles (AgNPs) using Trichoderma viride (HQ438699); the metabolite of this fungus will help either in reduction of the silver nitrate-adding active materials which will be loaded on the surface of the produced AgNPs. Poly(acrylonitrile-co-methyl methacrylate) copolymer (poly (AN-co-MMA)) was grafted with the prepared AgNPs. The poly(AN-co-MMA)/AgNPs were examined against ten different pathogenic bacterial strains, and the result was compared with another four different generic antibiotics. The produced poly(AN-co-MMA)/AgNPs showed high antibacterial activity compared with the four standard antibiotics. Moreover, the grafting of these AgNPs into the copolymer has potential application in the biomedical field.  相似文献   

9.
钟震  路航  任天斌 《化学进展》2014,26(12):1930-1941
纳米银(Ag NPs)由于其独特的物理、化学和生物学特性备受研究人员的关注.纳米银应用性能除了受到粒子尺寸、分布、纯度等因素影响,还与纳米银的形状密切相关.纳米银的形状对纳米银的抗菌性能、光学性能以及聚合物纳米银复合材料的综合性能都会产生重要影响.纳米银的形状控制合成可以进一步发挥聚合物纳米银复合材料的性能潜力.因此,不断发展纳米银新的合成方法,研究纳米银形状控制的机理就显得尤为重要.本文综述了纳米银合成方法和不同形状纳米银的最新研究进展,合成方法重点介绍了辐射法、激光烧蚀法、电化学法、光化学法和生物合成法,评述了这些方法的优缺点;同时从模板法、动力学、热力学以及氧化刻蚀4个方面介绍了纳米银形状控制的机理.介绍了聚合物纳米银复合材料的研究进展.  相似文献   

10.
Hybrid biomimetic hydrogels with enhanced reactive oxygen species (ROS)‐generation efficiency under 600 nm light show high antibacterial activity. The hybrid gels are composed of helical tri(ethylene glycol)‐functionalized polyisocyanides (PICs) and a conformation‐sensitive conjugated polythiophene, poly(3‐(3′‐N,N,N‐triethylammonium‐1′‐propyloxy)‐4‐methyl‐2,5‐thiophene chloride) (PMNT). The PIC polymer serves as a scaffold to trap and align the PMNT backbone into a highly ordered conformation, resulting in redshifted, new sharp bands in the absorption and fluorescence spectra. Similar to PIC, the hybrid closely mimics the mechanical properties of biological gels, such as collagen and fibrin, including the strain stiffening properties at low stresses. Moreover, the PMNT/PIC hybrids show much higher ROS production efficiency under red light than PMNT only, leading to an efficient photodynamic antimicrobial effect towards various pathogenic bacteria.  相似文献   

11.
Biphasic defective TiO2-x/reduced graphene oxide(RGO) nanocomposites were synthesized by simple hydrothermal reactions. Compared with TiO2-x and commercial P25, TiO2-x/RGO shows much better photocatalytic activity and excellent stability in pollutants degradation, which could be ascribed to Ti3+ centers complexed with RGO and the synergetic effect between the two phases. The study reveals a new route for the synthesis of mixed-phase defective TiO2-x/carbon material nanocomposites for photocatalytic applications.  相似文献   

12.
《Analytical letters》2012,45(12):2545-2551
ABSTRACT

A spectrochemical method has been developed for the quantitative determination of metallic silver in silver nitrate and silver chloride or bromide matrices exposed to light. The method is based on the oxidation of silver(0) by iron(III) at pH 3.5 in the presence of ferrozine. The resulting absorbance of the iron ferrozine complex is measured at 562 nm. Less than 0.1 mg of metallic silver can be determined with a relative standard deviation better than 6%.  相似文献   

13.
Nanotechnology is one of the most recent technologies. It is uncertain whether the production of small-size nanoparticles (NPs) can be achieved through a simple, straightforward, and medicinally active phytochemical route. The present study aimed to develop an easy and justifiable method for the synthesis of Ag, Au, and their Ag/Au bimetallic NPs (BNPs) by using Hippeastrum hybridum (HH) extract, and then to investigate the effects of Ag, Au, and their Ag/Au BNPs as antimicrobial and phytotoxic agents. Ag, Au, and their Ag/Au BNPs were characterized by UV-visible spectroscopy, FT-IR spectroscopy, XRD, EDX, and SEM analysis. XRD analysis conferring to the face of face-centered cubic crystal structure with an average size of 13.3, 10.72, and 8.34 nm of Ag, Au, and Ag/Au BNPs, respectively. SEM showed that Ag, Au, and Ag/Au BNPs had spherical morphologies, with calculated nano measurements of 40, 30, and 20 nm, respectively. The EDX analysis confirmed the composition of elemental Ag signal of the HH-AgNPs with 22.75%, Au signal of the HH-AuNPs with 48.08%, Ag signal with 12%, and Au signal with 38.26% of the Ag/Au BNPs. The Ag/Au BNPs showed an excellent antimicrobial efficacy against Gram-positive Staphylococcus aureus, Actinomycetes meriye, Bacillus cereus, Streptococcus pyogenes, Methicillin-resistant Staphylococcus aureus, Micrococcus luteus, Streptococcus pneumonia, and Gram-negative Klebsiella pneumonia, Escherichia coli, and Serratia marcescens bacterial strains, as well as against three fungal strains (Aspergillus niger, Aspergillus fumigatus, and Aspergillus flavus) compared to HH extract, HH-AgNPs, and HH-AuNPs. However, further investigations are recommended to be able to minimize potential risks of application.  相似文献   

14.
Water-soluble branched N-vinylpyrrolidone-crotonic acid-2-hydroxyethyl methacrylate terpolymers containing labile interchain urethane cross-links were prepared. Their molecular-weight characteristics were determined, and the hydrolytic stability under conditions close to those in a living body was evaluated. Polymeric salts of gentamicin were prepared from linear and branched chemodegradable N-vinylpyrrolidone terpolymers.  相似文献   

15.
In this study, biodegradable poly(butylenes succinate) (PBS) fiber mats containing silver nanoparticles (AgNPs) were prepared by the electrospinning process. Small AgNPs (<10 nm) were simply synthesized using polyvinylpyrrolidone as the capping agent as well as the reductant. The morphology of the PBS-AgNPs fiber mats and the distribution of the AgNPs were well characterized by TEM and SEM. The release of Ag from the PBS fiber mats was quantitively determined by ICP. The PBS fiber mats with 0.29 % AgNPs content showed strong antimicrobial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli with the efficacy as high as 99 %. The effective bactericidal activity on E. coli was demonstrated for a short contacting time with the PBS-AgNPs fiber mats. In addition, the long-term release performance of Ag from the fiber mats can keep inhibiting the bacterial growth in the mats over a long period of time.  相似文献   

16.
A promising electrochemical sensor based nickel‐carbon nanotube (Ni‐CNT) modified on glassy carbon (GC) electrode had been developed and the properties of the modified electrode were characterized by multispectroscopic analysis. The fabricated sensor (GC/Ni‐CNT) electrode was utilized to determine the catecholamines such as epinephrine and dopamine simultaneously. Differential pulse voltammetry and amperometry were used to verify the electrochemical behavior of the studied compounds. The GC/Ni‐CNT based amperometric sensor showed a wide linear range and low detection limit with high analytical sensitivity of 8.31 and 6.61 μA μM?1 for EP and DA, respectively which demonstrates better characteristics compared to other electrodes reported in the literature. Further, no significant change in amperometric current response was observed in presence of biological interference species such as glucose, cysteine, citric acid, uric acid and ascorbic acid in the detection of EP and DA. The utility of this GC/Ni‐CNT electrode was well established for the determination of EP and DA in human urine samples.  相似文献   

17.
Summary: A feasible method for the preparation of antimicrobial ultrafine fibers with silver nanoparticles was developed by direct electrospinning of a cellulose acetate (CA) solution with small amounts of silver nitrate followed by photoreduction. Silver nanoparticles in ultrafine CA fibers were stabilized by interactions with carbonyl oxygen atoms in CA. Ultrafine CA fibers with silver nanoparticles showed very strong antimicrobial activity.

TEM image of an ultrafine CA fiber electrospun from 10 wt.‐% CA solution with 0.5 wt.‐% AgNO3.  相似文献   


18.
Enzyme-mimicking artificial nanomaterials often termed nanozymes have broad applications in many fields, including biosensing, pollutant degradation and cancer diagnosis. Herein, we introduce a plasmonic gold nanoparticle-modified Mn3O4 nanozyme (Mn3O4-Au). Visible or near infrared light excitation into the plasmonic absorption band of the surface-bound gold nanoparticles enhances the catalytic oxidation of tetramethylbenzidine (TMB). The mechanism of light-enhanced peroxidase activity is proposed based on the Mn3O4 conduction band mediated hot electron transfer from photoexcited gold nanoparticles to H2O2 which undergoes further oxygen-oxygen bond cleavage to yield hydroxyl radical. The surface decoration of plasmonic gold nanoparticles endows Mn3O4-Au to be a light-regulated nanozyme.  相似文献   

19.
Silver nanoparticles were synthesized by the reduction of the silver nitrate (AgNO3) using the latex copolymer in ethanol solution under microwave (MW) heating. The reaction parameters such as silver precursor concentration (from 0.005 to 0.1 g/l) and MW power (200–800 W) significantly affect the formation rate, shape, size and distribution of the silver nanoparticles. A significant reduction of irradiation time was observed when the MW energy is compared to conventional thermal reduction processes. The prepared silver nanoparticles show uniform and stable sizes from 5 to 11 nm, which can be stored at room temperature for approximately 12 months without any visible change. These peculiarities indicate that the latex copolymer is a good stabilizer for the silver nanoparticles. The optical properties, morphology, and crystalline structure of the silver-latex copolymer nanocomposites were characterized by the Ultraviolet–Visible spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The study of the TEM images at high magnifications identified the silver nanoparticles as face-centered cubic (fcc) structure with spherical and hexagonal shapes.  相似文献   

20.
In this work, structurally enhanced hydrogel nanocomposites based on 2-acrylamido-2 methyl propane sulfonic acid (AMPS)-acrylamide (AAM) copolymer with high hydrophilic group content were prepared by in-situ copolymerization by using different types of clay (montmorillonite, mica and halloysite). Nanocomposite hydrogels were characterized by Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) analyses and determination of swelling degrees of the samples. Mechanical properties of the samples were also investigated by determination of the compressive elastic modulus. It was also found that exfoliated or highly expanded intercalated nanocomposite structure was obtained and clay incorporation into the AMPS-AAM hydrogel structure improved its swelling capacity. The highest swelling capacity (1030 g H2O/g) was observed for the nanocomposite sample prepared with the montmorillonite amount of 5% (w). Furthermore, mechanical strength of the hydrogels against compression forces was significantly improved by the clay addition. It was found that the type of clay, in other word filler geometry, affected the compressive elastic modulus (E) of the samples. It was concluded that halloysite, which is considered to be a one dimensional (1D) nanotubular filler was less effective to enhance the compressive elastic modulus (E) of such materials compared with the montmorillonite and mica having two dimensional (2D) platelet or disk-like shapes at a particular amount of clay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号