首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct numerical simulation of viscoelastic turbulent channel flows up to the maximum drag reduction (MDR) limit has been performed. The simulation results in turn have been used to develop relationships between the flow and fluid rheological parameters, i.e. maximum chain extensibility, Reynolds number, Reτ, and Weissenberg number, Weτ and percent drag reduction (%DR) as well as the slope increment of the mean velocity profile. Moreover, based on the trends observed in the mean velocity profile and the overall momentum balance three different regimes of drag reduction (DR), namely, low drag reduction (LDR; 0  %DR  20), high drag reduction (HDR; 20  %DR  52) and MDR (52  %DR  74) have been identified and mathematical expressions for the eddy viscosity in these regimes are presented. It is found that both in LDR and HDR regimes the eddy viscosity varies with the distance from the channel wall. However, in the MDR regime the ratio of the eddy viscosity to the Newtonian one tends to a very small value around 0.1 within the channel. Based on these expressions a procedure that relies on the DNS predictions of the budgets of momentum and viscoelastic shear stress is developed for evaluating the mean velocity profile.  相似文献   

2.
Drag reduction is the effective reduction of the fluid flow friction brought about by the addition of small amounts of dissolved polymer, suspended particles, or emulsions. This study has focused on the turbulent-flow drag reduction effected by small amounts (10 -6–10 -3 g/ml) of polyisobutylene dissolved in organic solvents of varying solubility parameters. The data show that a maximum drag reduction (up to 70% for Reynolds numbers of 20,000) occurs in solvents with a solubility parameter near that of the polymer.  相似文献   

3.
This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.  相似文献   

4.
The pipe flow drag-reducing properties of mixtures of alkyltrimethylammonium halides with 1-naphthol in aqueous solution have been investigated. The effects of solution concentration, soap-naphthol ratio, soap molecular weight and solution temperature upon drag reduction and swirl decay time are reported. The critical wall shear stresses above which the drag-reducing properties cease correlate well with swirl decay time. At low soap concentrations greater than equimolar proportions of 1-naphthol with the soap are required for maximum drag reduction. The drag-reducing properties of these solutions are greatest at and around the Krafft point of the pure soap. A phenomenon similar to onset for polymer solution drag reduction is reported for these soap solutions.  相似文献   

5.
The turbulent drag reduction caused by polymer-polymer and polymerfibre mixtures has been measured in recirculatory flow of water. Shear stability studies have also been made on a number of drag reducing polymers, asbestos fibres and their mixtures in recirculatory turbulent flow of water. Reynolds numbers ranged from 20,000 to 57,000. Both positive and negative deviations from linear additive behaviour have been observed in drag reduction caused by the polymer-polymer mixtures depending upon their compositions, flow rate and polymer species in the mixture. The drag reduction by the mixtures has been predicted by using simple mixture rule equations including an interaction parameter. This interaction parameter is believed to depend upon the polymer interaction in the polymer mixture. The random coil size and rigidity of the polymer molecules appear to be responsible for the synergism observed in the drag reduction caused by the mixture. In general, mixtures having larger solvation number seem to give positive synergism.Synergism in drag reduction by the polymer-fibre mixtures has also been observed. The simple mixture law equation with interaction parameter is also applicable in predicting the drag reduction by the mixtures as above. The random coil size of the polymer molecules and the rigidity of the polymer-fibre system appear to be responsible for the synergism observed in drag reduction. In the shearstability studies it has been observed that the decrement in drag reduction (DR) is higher than the the decrement in absolute viscosity in most cases. Carboxymethyl cellulose is found to be the most shear stable polymer followed by guar gum, xanthan gum and polyacrylamide. The mixtures exhibiting synergism in causing drag reduction are found to be more shear stable.  相似文献   

6.
Tests of drag-reducing polymer coated on a riblet surface   总被引:1,自引:0,他引:1  
Experiments have been carried out at BMT where the drag reduction due to Hoechst U-groove riblets, a polymer coating, and the two combined were measured in a towing tank on a one-third scale model of the America's Cup winning yacht, Australia II. The results indicated that the riblet/polymer combination offered an overall improvement in drag reduction characteristics over either riblets or polymer coating alone, with a maximum reduction of 3.5% observed for a non-dimensional S +=8. The qualitative behaviour of the drag reduction was similar to that recorded in earlier pipe flow experiments, employing an injection of polymer additive and 3M V-groove riblets, but contrary to that recorded in studies of an axisymmetric body, also coated with 3M riblets, in a drop tank filled with a polymer solution.  相似文献   

7.
In this paper we report on (two-component) LDV experiments in a fully developed turbulent pipe flow with a drag-reducing polymer (partially hydrolyzed polyacrylamide) dissolved in water. The Reynolds number based on the mean velocity, the pipe diameter and the local viscosity at the wall is approximately 10000. We have used polymer solutions with three different concentrations which have been chosen such that maximum drag reduction occurs. The amount of drag reduction found is 60–70%. Our experimental results are compared with results obtained with water and with a very dilute solution which exhibits only a small amount of drag reduction. We have focused on the observation of turbulence statistics (mean velocities and turbulence intensities) and on the various contributions to the total shear stress. The latter consists of a turbulent, a solvent (viscous) and a polymeric part. The polymers are found to contribute significantly to the total stress. With respect to the mean velocity profile we find a thickening of the buffer layer and an increase in the slope of the logarithmic profile. With respect to the turbulence statistics we find for the streamwise velocity fluctuations an increase of the root mean square at low polymer concentration but a return to values comparable to those for water at higher concentrations. The root mean square of the normal velocity fluctuations shows a strong decrease. Also the Reynolds (turbulent) shear stress and the correlation coefficient between the stream wise and the normal components are drastically reduced over the entire pipe diameter. In all cases the Reynolds stress stays definitely non-zero at maximum drag reduction. The consequence of the drop of the Reynolds stress is a large polymer stress, which can be 60% of the total stress. The kinetic-energy balance of the mean flow shows a large transfer of energy directly to the polymers instead of the route by turbulence. The kinetic energy of the turbulence suggests a possibly negative polymeric dissipation of turbulent energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
An important way of increasing the speed and lowering the fuel consumption of ships is by decreasing the frictional drag. One of the most promising techniques for reducing drag is the use of air bubbles. The goal of this investigation is to establish a set of optimum robust parametric levels for drag reduction by a mixture (air–water) film in turbulent channel flow. Based on the conditions laid out by the Taguchi orthogonal array method, turbulent flows, with air bubbles injected into a channel, are simulated using commercial computational fluid dynamics software. The local shear stress on the upper wall is computed to evaluate the efficiency of drag reduction. Many factors can affect drag reduction. The factors investigated in this study are the rate of air injection, bubble size, area of air injection, flow speed, and measured position of the shear stress. These factors have been investigated through the analysis of variance, which has revealed that the rate of air injection and water flow speed dominate the efficiency of drag reduction by a mixture film. According to the results, the drag can be reduced by an average of 83.4%; and when the configuration of the parametric levels is optimum the maximum drag reduction of 88.5% is achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Using a priori analyses of direct numerical simulation (DNS) data, a Reynolds stress model (RSM) is developed to account for the influence of polymer additives on turbulent flow over a wide range of flow conditions. The Finitely Extensible Nonlinear Elastic-Peterlin (FENE-P) rheological constitutive model is utilized to evaluate the polymer contribution to the stress tensor. Thirteen DNS data sets are used to analyze the budgets of elastic stress–velocity gradient correlations as well as Reynolds stress and dissipation transport. Closures are developed in the framework of the RSM model for all the required unknown and non-linear terms. The polymer stresses, velocity profiles, turbulent flow statistics and the percentage of friction drag reduction predicted by the RSM model are in good agreement with present and those obtained from independent DNS data over a wide range of rheological and flow parameters.  相似文献   

10.
The drag reduction characteristics of certain high molecular weight polymers have been studied by various investigators. Because of the polymer’s ability to reduce turbulent shear stress and dependence of the boundary layer wall pressure spectral amplitude on the shear stress, polymer has the potential to suppress noise and vibration caused by the boundary layer unsteady pressures. Compared to its effect on drag reduction, polymer additive effects on turbulent boundary layer (TBL) wall pressure fluctuations have received little attention. Kadykov and Lyamshev [Sov. Phys. Acoust. 16 (1970) 59], Greshilor et al. [Sov. Phys. Acoust. 21 (1975) 247] showed that drag reducing polymer additives do indeed reduce wall pressure fluctuations, but they have not established any scaling relationship which effectively collapse data. Some effort has been made by Timothy et al. [JASA 108 (1) (2000) 71] at Penn State University to develop a scaling relationship for TBL wall pressure fluctuations that are modified by adding drag reducing polymer to pure water flow. This paper presents a theoretical model based on the work of the Timothy et al. team at ARL, Penn State University. Through this model one can estimate, reduction in TBL flow induced noise and vibration for rigid smooth surfaces due to release of drag reducing polymers in boundary layer region. Using this theoretical model, flow noise as experienced by a typical flush mounted hydrophone has been estimated for a smooth wall plate as a function of polymer additive concentration. Effect of non-dimensionalisation of the wall pressure fluctuations frequency spectra with traditional outer, inner and mixed flow variables will also be addressed in the paper. The paper also covers a model based on molecular relaxation time in polymer additives which not only reduce drag but also flow induced noise up to certain polymer concentration.  相似文献   

11.
In the present paper, two correlations have been developed to predict the effect of DRP on friction factor of two-phase flow for any pipe diameter. The correlations have been verified using published experimental results of DRP added to air–liquid annular flow and for oil–water flows with any flow pattern at the asymptotic state (maximum drag reduction). Such correlations are not available in literature and considered to be very useful in predicting the drag reduction using DRP and in understanding the most significant parameters that affecting the mechanism of drag reduction by polymers in multiphase flow.  相似文献   

12.
One very effective method of reducing the drag of a turbulent fluid flow is through the use of soluble, viscoelastic, long-chain, high-molecular-weight polymer additives. These additives have produced drag reduction of up to 80% in pipe flows. Polymers are typically added by injecting high concentration solutions into an established Newtonian flow.This study investigated the mechanism of drag reduction that occurs when a long-chain, high-molecular-weight polymer is injected along the centerline of a pipe with a concentration high enough to form a single, coherent, unbroken thread. In the present experiments, the unbroken threads existed for more than 200 pipe diameters downstream of the injector and produced drag reductions on the order of 40%. Previous authors have contended that this type of drag reduction is caused by the interaction of the thread with the outer flow. However, it has been proven in cases where the polymer is mixed throughout the flow that drag reduction requires the existence of polymer in the near-wall region. The objective of this study was to test the hypothesis that drag reduction from a polymer thread is caused by transport of polymer molecules from the thread into the near-wall region of the pipe. The objective was realized through the measurement of the drag reduction, the radial location of the thread, and the polymer concentration in the near-wall region. The concentration was measured by laser-induced fluorescence utilizing fluorescein dye as the tracer. This study provides strong evidence that the drag reduction from a polymer thread is caused by the transport of very low concentrations of polymer from the thread into the near-wall region.  相似文献   

13.
Drag reduction was studied for turbulent flow over a structured wall that contained 600 sinusoidal waves with a wavelength of 5 mm and an amplitude of 0.25 mm. A concentrated solution of a co-polymer of polyacrylamide and sodium acrylate was injected into the flow through wall slots. Laser Doppler velocimetry was used to measure turbulence. A fluorescence technique was developed that enabled us to demonstrate the existence, under certain circumstances, of large gelatinous structures in the injected polymer solution and in the flow channel.At maximum drag reduction, the Reynolds shear stress was zero and the velocity field was the same as found for a smooth surface. Larger drag reductions could be realized for a wavy wall because the initial drag was larger. The influences of polymers on the turbulent fields are similar for smooth and wavy boundaries. These results are of interest since the interaction with the wall can be quite different for water flow over smooth and wavy boundaries (which are characterized as being completely rough). An important effect of polymers is a decreasing relative importance of high frequency fluctuations with increasing drag reduction that is characterized by a cut-off frequency. This cut-off is the same for smooth and wavy walls at maximum drag reduction. The sensitivity of drag reduction to the method of preparing and delivering the polymer solution suggests that aggregation of polymers could be playing an important role for the system that was studied. For example, drag reduction was enhanced when large polymer structures are present.  相似文献   

14.
Drag reduction (DR) for air and water flowing in an inclined 0.0127 m diameter pipe was investigated experimentally. The fluids had an annular configuration and the pipe is inclined upward. The injection of drag reducing polymer (DRP) solution produced drag reductions as high as 71% with concentration of 100 ppm in the pipeline. A maximum drag reduction that is accompanied (in most cases) by a change to a stratified or annular-stratified pattern. The drag reduction is sensitive to the gas and liquid superficial velocities and the pipe inclination. Maximum drag reduction was achieved in the case of pipe inclination of 1.28° at the lowest superficial gas velocity and the highest superficial liquid velocity. For the first time in literature, the drag reduction variations with the square root of the superficial velocities ration for flows with the same final flow patterns have self-similar behaviors.  相似文献   

15.
Summary Drag reduction measurements have been made with samples of polyethyleneoxide and polyacrylamide with relatively narrow molecular weight distributions obtained by fractionation of commercial polymers. Relationships between the polymer molecular weight and the concentration required to give the same drag reduction have been determined. The influence of polymer degradation upon these relationships has been investigated.Molecular weight distributions of commercial polymers have been determined and their influence upon the drag-reducing properties is noted.The influence of wall shear stress has been investigated over the range 1.0 × 102 - 4.5 × 103 dyn/cm2. The results with unfractionated polymers were found to be consistent with other results in the literature.  相似文献   

16.
The possibility of controlling the aerodynamic characteristics of airfoils with the help of local pulsed-periodic energy addition into the flow near the airfoil contour at transonic flight regimes is considered. By means of the numerical solution of two-dimensional unsteady equations of gas dynamics, changes in the flow structure and wave drag of a symmetric airfoil due to changes in localization and shape of energy-addition zones are examined. It is shown that the considered method of controlling airfoil characteristics in transonic flow regimes is rather promising. For a zero angle of attack, the greatest decrease in wave drag is obtained with energy addition at the trailing edge of the airfoil.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 5, pp. 60–67, September–October, 2005.  相似文献   

17.
添加剂湍流减阻流动与换热研究综述   总被引:2,自引:1,他引:1  
焦利芳  李凤臣 《力学进展》2008,38(3):339-357
添加剂湍流减阻是指在液体的管道湍流中添加少量的高分子聚合物或某种表面活性剂从而使湍流阻力大大降低的现象.从其被发现至今,经过近半个世纪的研究(实验研究、理论分析、数值模拟和实际系统的应用研究),尽管对这一现象及其实际应用价值已有了较为深入的认识,但仍有许多方面尚有欠缺,例如对湍流减阻的机理仍然在探索中.本文归纳评述了高分子聚合物或表面活性剂添加剂湍流减阻流动与换热现象的研究现状,从湍流减阻剂的特性、减阻剂的湍流减阻机理、湍流减阻发生时的换热机理、减阻流动速度场分布和换热控制等几个方面综述了添加剂湍流减阻流动与换热特性,并综述了湍流减阻剂在实际工业系统中的应用情况,在对添加剂湍流减阻机理、有湍流减阻发生时的对流换热机理等的理解方面进行了新的总结.   相似文献   

18.
In this article a parametric study based on a balance between viscous drag and restoring Brownian forces is used in order to construct a nonlinear dumbbell model with a finite spring and a drag correction for a dilute polymer solution. The constitutive equations used are reasonable approximation for describing flows of very dilute polymer solutions such as those used in turbulent drag reduction. We investigate the response of an elastic liquid under extensional flows in order to explore the roles of a stress anisotropy and of elasticity in strong flows. It is found that for low Reynolds numbers, the extensional viscosity of a dilute polymer solution is governed by two parameters: a Deborah number representing the importance of the elasticity on the flow and the macromolecule extensibility that accounts for the viscous anisotropic effects caused by the macromolecule orientation. Two different asymptotic regimes are described.The first corresponds to an elastic limit in which the extensional viscosity is a function of the Deborah number and the particle volume fraction. The second is an anisotropic regime with the extensional viscosity independent of Deborah number but strongly dependent on macromolecule aspect ratio. The analysis may explain from a phenomenological point of view why few ppms of macromolecules of high molecule weight or a small volume fraction of long fibres produce important attenuation of the pressure drop in turbulent flows. On the basis of our analysis it is seen that the anisotropic limit of the extensional viscosity caused by extended polymers under strong flows should play a key role in the attenuation of flow instability and in the mechanism of drag reduction by polymer additives.  相似文献   

19.
Experimental results from a study of surface roughness effects on polymer drag reduction in a zero-pressure gradient flat-plate turbulent boundary layer are presented. Both slot-injected polymer and homogeneous polymer ocean cases were considered over a range of flow conditions and surface roughness. Balance measurements of skin friction drag reduction are presented. Drag reductions over 60% were measured for both the injected and homogeneous polymer cases even with fully rough surfaces. As the roughness increased, higher polymer concentration was required to achieve a given level of drag reduction for the homogeneous case. With polymer injection, increasing surface roughness caused the drag reduction to decrease to low levels more quickly when the polymer expenditure was decreased or the freestream velocity was increased. However, the percent drag reductions on the rough surfaces with polymer injection were often substantially larger than on the smooth surface. Remarkably, in some cases, the skin friction drag force on a rough surface with polymer injection was less than the drag force observed on a smooth surface at comparable conditions. An erratum to this article can be found at  相似文献   

20.
The rheological properties of 1–50 ppm poly α-olefins in Varsol 80 were studied using laminar and Taylor flows. In Taylor flow, all the studied poly α-olefins displayed polymer induced drag reduction and polymer scission. The measurements were carried out using a commercial rheometer equipped with a standard double-gap sample holder with axial symmetry. We find that this particular instrument even at the maximum obtainable geometrically averaged shear rate of 15,000 s−1 yields, an accuracy and a reproducibility better than ±2.5%. This unique precision for measurements in the presence of Taylor vortices, the small amounts of sample and time needed to carry out the measurements, and the general availability of the rheometer, suggests that these previously unexplored properties of this instrument will be of significant value for future investigations of polymer induced drag reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号