首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier transform infrared and Fourier transform Raman spectra of Cu(II) bis-acetylacetone have been obtained. The geometry, frequency and intensity of the vibrational bands of this compound and its 1,5-(13)C(2), 3-(13)C, 1,3,5-(13)C(3), 2,4-(13)C(2), (18)O(2) and 2,4-(13)C(2)-(18)O(2) derivatives were obtained by the density functional theory (DFT) with the B3LYP functional and using the 6-31G(*) and 3-21G(*) basis sets. The calculated frequencies are compared with the solid infrared and Raman spectra. All the measured infrared and Raman bands were interpreted in terms of the calculated vibrational modes. The percentage of deviation of the bond lengths and bond angles gives a good picture of the normal modes, and serves as a basis for the assignment of the wavenumbers. Most computed bands are predicted to be at higher wavenumbers than the experimental bands. The calculated geometrical parameters show slight differences compared with the experimental results. These differences can be explained by the different physical state of Cu(II) bis-acetylacetone. The DFT-B3LYP calculations assumed a free molecule in the gas phase. Analysis of the vibrational spectra indicates a strong coupling between the chelated ring modes.  相似文献   

2.
In this work, the Fourier transform Raman and Fourier transform infrared spectra of 2-chloronicotinic acid (2-CNA) are recorded in the solid phase. The molecular geometry, vibrational frequencies, infrared intensities and Raman scattering activities of 2-CNA in ground state have been calculated by using ab initio Hartree–Fock (HF) and density functional (B3LYP and B3PW91) methods with 6-31G(d) and 6-311G(d) basis sets level. On the basis of the comparison between calculated and experimental results and the comparison with related molecule, assignments of fundamental vibrational modes are examined. The optimized geometric parameters (bond lengths and bond angles) obtained by using HF show the best agreement with the experimental values of 2-CNA. Comparison of the observed fundamental vibrational frequencies of 2-CNA and calculated results by density functional (B3LYP and B3PW91) and Hartree–Fock methods indicates that B3LYP is superior to the scaled Hartree–Fock and B3PW91 approach for molecular vibrational problems.  相似文献   

3.
The molecular geometrical parameters, rotational constants, dipole moments and vibrational infrared properties of a series of phosphoryl compounds (OPX i Y j Z k , X, Y, Z = F, Cl, Br; i+ j + k = 3) and their thio analogs are predicted by density functional and MP2 calculations using the 6-311G(2d,2p) basis set. Both methods yielded similar results. The predicted molecular parameters and the vibrational Raman and infrared spectra agree well with the available experimental data. The Raman Scattering Activities (RSA) and depolarization ratios (Dep) of the molecules are obtained by DFT calculations. Considering the different substitution modes of various halogen atoms, the resultant changes in the geometrical and vibrational properties are discussed. Such studies permit detailed information to be obtained concerning unknown molecules and can define the guidelines for synthesizing molecules of particular characteristics.  相似文献   

4.
The molecular structures, vibrational frequencies and corresponding vibrational assignments of xanthine and its methyl derivatives (caffeine and theobromine) have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d, p) basis set level. The calculations were utilized to the C(S) symmetries of the molecules. The obtained vibrational frequencies and optimised geometric parameters (bond lengths and bond angles) were seen to be well agreement with the experimental data. The used scale factors which have been obtained the ratio of the frequency values of the strongest peaks in the calculated and experimental spectra seem to cause the gained vibrations well corresponding to the experimental ones. Theoretical infrared intensities and Raman activities are also reported.  相似文献   

5.
FT Raman and FTIR spectra of Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) and its deuterated analogue are recorded. Comparison between the spectra obtained by two techniques, a series of density functional theory (DFT) calculations and the spectral behavior upon deuteration were used for the assignment of the vibrational spectra of this compound. The calculated vibrational frequencies by the B3LYP, B3PW91, G96LYP, G96P86, and MPWLYP density functionals are generally consistent with the observed spectra. Infrared and Raman vibrational transitions predicted by B3LYP/6-311++G** are reported for the titled compound and its deuterated analogous and the assignments are discussed. All experimental and theoretical results support a relatively weak hydrogen bond in naphthazarin (NZ), compared with that in the enol form of normal beta-diketones. The observed nuOH/nuOD and gammaOH/gammaOD appear at about 3060/2220 and 790/560 cm(-1), respectively, which are consistent with the calculated hydrogen bond geometry and proton chemical shift results. Two bands at about 350 and 290 cm(-1) are assigned to the O...O stretching modes belong to A1 and B2 species, respectively.  相似文献   

6.
Solid-state IR and Raman as well as aqueous solution state Raman spectra are reported for urazole, 4-methylurazole and their deuterated derivatives. DFT calculations, at the B3-LYP/cc-pVTZ level, established that the structures and vibrational spectra of the molecules can be interpreted using models with hydrogen-bonded water molecules, in conjunction with the polarizable continuum solvation method. The vibrational spectra were computed at the optimised molecular geometry in each case, enabling normal coordinate analysis, which yielded satisfactory agreement with the experimental IR and Raman data. Computed potential energy distributions of the normal modes provided detailed vibrational assignments. Solid-state pseudopotential-plane-wave DFT calculations, using the PW91 functional were also carried out, reflecting the importance of intermolecular hydrogen bonding in the solid state.  相似文献   

7.
The molecular structure, intramolecular hydrogen and vibrational frequencies of 4-methylamino-3-penten-2-one were investigated by a series of density functional theoretical (DFT) calculations and ab initio calculation at the post-Hartree-Fock (MP2) level. Fourier transform infrared and Fourier transform Raman spectra of this compound and its deuterated analogue were clearly assigned. The calculated geometrical parameters show a strong intramolecular hydrogen bond with a N...O distance of 2.622-2.670 A. This bond length is about 0.02 A shorter than that in its parent, 4-amino-3- penten-2-one which is in agreement with spectroscopic results. Furthermore, the conformations of methyl groups with respect to the plane of the molecule and with respect to each other were investigated.  相似文献   

8.
The infrared and Raman spectra of (E)-4-((anthracen-9-ylmethylene)amino)-N-carbamimidoylbenzene sulfonamide have been recorded and analysed. Geometry and harmonic vibrational wavenumbers were calculated theoretically using Gaussian03 set of quantum chemistry codes. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands found in infrared and Raman spectra of the studied molecule. The red-shift of the NH stretching band in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond. The NH stretching band has split into a doublet in the IR spectrum owing to the Davydov coupling between neighbouring units. The geometrical parameters of the title compound are in agreement with the reported similar derivatives. The calculated first hyperpolarizability is comparable with the reported value of similar structures and may be an attractive object for further studies on non-linear optics. The important thermodynamical parameters are also reported.  相似文献   

9.
The X-ray and vibrational spectroscopic analysis of para-nitraminopyridine N-oxide are reported. The crystals of investigated compound belong to P2(1) of the monoclinic system, Z=4, a=3.735 A, b=11.767 A, c=14.679 A and beta=93.27 degrees . Room temperature powder infrared and Raman spectra of the title compound and its deuterated analogue were measured. The molecular structure of p-nitraminopyridine N-oxide has been calculated with the aid of density functional (B3LYP) method with the extended 6-311++G(d,p) basis set. The calculated geometrical parameters of investigated molecule in gas phase were compared with experimental X-ray data. The harmonic frequencies, potential energy distribution (PED) and IR intensities of p-nitroaminopyridine N-oxide and its deuterated analogue were calculated with B3LYP method. The assignment of the experimental spectra has been made on the basis of the calculated PED. The time depend Hartree-Fock (TDHF) method was used for calculations of hyperpolarizability beta coefficient.  相似文献   

10.
We examined the 204-nm UV resonance Raman (UVR) spectra of the polyproline II (PPII) and alpha-helical states of a 21-residue mainly alanine peptide (AP) in different H2O/D2O mixtures. Our hypothesis is that if the amide backbone vibrations are coupled, then partial deuteration of the amide N will perturb the amide frequencies and Raman cross sections since the coupling will be interrupted; the spectra of the partially deuterated derivatives will not simply be the sum of the fully protonated and deuterated peptides. We find that the UVR spectra of the AmIII and AmII' bands of both the PPII conformation and the alpha-helical conformation (and also the PPII AmI, AmI', and AmII bands) can be exactly modeled as the linear sum of the fully N-H protonated and N-D deuterated peptides. Negligible coupling occurs for these vibrations between adjacent peptide bonds. Thus, we conclude that these peptide bond Raman bands can be considered as being independently Raman scattered by the individual peptide bonds. This dramatically simplifies the use of these vibrational bands in IR and Raman studies of peptide and protein structure. In contrast, the AmI and AmI' bands of the alpha-helical conformation cannot be well modeled as a linear sum of the fully N-H protonated and N-D deuterated derivatives. These bands show evidence of coupling between adjacent peptide bond vibrations. Care must be taken in utilizing the AmI and AmI' bands for monitoring alpha-helical conformations since these bands are likely to change as the alpha-helical length changes and the backbone conformation is perturbed.  相似文献   

11.
Cadmium-n-di-isopropylphosphorylguanidine-di-chloride (CdDPGCl2) was synthesized in the solid phase and characterized previously. The Fourier transform infrared and Raman spectra of (CdDPGCl2) in the solid state were recorded and analyzed. Emphasis was placed on the vibrational assignment of the [(O2P=O-[CdCl2]-HN=C) fragment of the complete molecular structure. With the aim of assisting the vibrational assignment of the experimental spectra, a comparison with the spectra of N-di-isopropylphosphorylguanidine ligand was carried out and ab initio calculations have been performed with several effective core potentials and valence basis sets (Hay-Wadt (HW) and Stevens-Basch-Krauss (SBK)). Due to our limited computational resources, hydrogen atoms replaced the isopropyl groups. The calculated geometrical parameters showed excellent agreement with the experimental, as well as the RHF/MP2 calculated infrared wave numbers, when compared to the IR/Raman experimental wave numbers.  相似文献   

12.
The comparative analysis of IR and Raman spectra of peramine and its four derivatives in solid state was carried out. The harmonic vibrational frequencies, infrared intensities, and Raman scattering activities were calculated at density functional B3LYP methods with 6-311++G(d,p) basis set. For the predicted spectra, a potential energy distribution of normal modes was also calculated. For peramine derivatives the conjugation effect of pyrrole with pyrazinone ring was observed as a result of introduction of double bond. Moreover, 1H NMR analysis indicated that pyrrole protons are deshielded in comparison with the pyrrolopyrazinone model ring system.  相似文献   

13.
The intramolecular hydrogen bond, molecular structure and vibrational frequencies of tetra-acetylethane have been investigated by means of high-level density functional theory (DFT) methods with most popular basis sets. Fourier transform infrared and Fourier transform Raman spectra of this compound and its deuterated analogue were recorded in the regions 400-4000 cm(-1) and 40-4000 cm(-1), respectively. The calculated geometrical parameters of tetra-acetylethane were compared to the experimental results of this compound and its parent molecule (acetylacetone), obtained from X-ray diffraction. The O...O distance in tetra-acetylethane, about 2.424A, suggests that the hydrogen bond in this compound is stronger than acetylacetone. This conclusion is well supported by the NMR proton chemical shifts and O-H stretching mode at 2626 cm(-1). Furthermore, the calculated hydrogen bond energy in the title compound is 17.22 kcal/mol, which is greater than the acetylacetone value. On the other hand, the results of theoretical calculations show that the bulky substitution in alpha-position of acetylacetone results in an increase of the conjugation of pi electrons in the chelate ring. Finally, we applied the atoms in molecules (AIM) theory and natural bond orbital method (NBO) for detail analyzing the hydrogen bond in tetra-acetylethane and acetylacetone. These results are in agreement with the vibrational spectra interpretation and quantum chemical calculation results. Also, the conformations of methyl groups with respect to the plane of the molecule and with respect to each other were investigated.  相似文献   

14.
The infrared spectra of 1-methylthymine (1-MeT) in argon and nitrogen cryogenic matrices are presented, for the first time. The molecular structure, conformations, vibrational frequencies, infrared intensities and Raman scattering activities of 1-MeT have been calculated by the DFT(B3LYP), MP2 and HF methods using the D95V** basis set. The theoretically predicted intensity pattern of the IR and Raman bands has proved to be of great help in assigning the experimental spectra. Rigorous normal coordinate analysis has been performed, at each level of theory. The unequivocal and complete vibrational assignment for 1-MeT has been made on the basis of the calculated potential energy distribution (PED). Comparison of the experimental matrix isolation spectra with the theoretical results has revealed that the B3LYP method is superior to both the MP2 and HF methods in predicting the frequencies of uracil derivatives. The MP2 method consistently underestimates the frequencies of the out-of-plane gamma(C=O) and gamma(C-H) bending modes, while the HF method yields the reverse order of the frequencies of two nu(C=O) stretching vibrations. Investigation of the frequency shift of several bands, on passing from matrix isolation to solid state spectra, has provided information on the strength of intermolecular hydrogen bonding in the crystal of 1-MeT. Several ambiguities in the earlier assignments of the vibrational spectra of polycrystalline 1-MeT have been clarified.  相似文献   

15.
The Raman and infrared spectra of gas phase Re(2)O(7) are reported. The experimental vibrational spectra of molecular Tc(2)O(7) and Re(2)O(7) are compared with calculated spectra. The results of these studies agree with a nonlinear M-O-M bridge for Tc(2)O(7) and Re(2)O(7). For infrared intensity calculations, the point charge approximation is used, while for the Raman calculations a combination of bond and atom polarizabilities is adopted. Pure Re(2)O(7) was prepared from rhenium wire, but attempts to prepare it from rhenium powder and oxygen always led to infrared spectra showing serious contamination from a species containing an -OH linkage. Detailed experiments identified this molecule as HReO(4), a unique transition metal analogue of the perhalic acids, and a partial infrared spectrum of this molecule is reported.  相似文献   

16.
The experimental and theoretical study on the structures and vibrations of 6-chloronicotinic acid (6-CNA, C(6)H(4)ClNO(2)) are presented. The Fourier transform infrared spectra (4,000-50 cm(-1)) and the Fourier transform Raman spectra (3,500-50 cm(-1)) of the title molecule in solid phase have been recorded, for the first time. The geometrical parameters and energies have been obtained for all four conformers from DFT (B3LYP) with different basis sets calculations. There are four conformers, C1, C2, C3, and C4 for this molecule. The computational results diagnose the most stable conformer of 6-CNA as the C1 form. The vibrations of the two stable and two unstable conformers of 6-CNA are researched with the aid of quantum chemical calculations. The molecular structure, vibrational frequencies, infrared intensities and Raman scattering activities and theoretical vibrational spectra were calculated a pair of molecules linked by the intermolecular OH...O hydrogen bond. The spectroscopic and theoretical results are compared to the corresponding properties for 6-CNA stable monomers and dimer of C1 conformer.  相似文献   

17.
Fourier transform infrared and Fourier transform Raman spectra of 3-amino-1-phenyl-2-buten-1-one and its deuterated analogue were recorded in the regions 400-4,000 and 150-4,000 cm(-1), respectively. Furthermore, the molecular structure and vibrational frequencies of title compound were investigated by a series of density functional theoretical, DFT, and ab initio calculations at the post-Hartree-Fock (MP2) level. Although, the calculated frequencies are generally in agreement with the observed spectra but the DFT results are in much better quantitative agreement with the observed spectra than the MP2 results. The observed wavenumbers were analyzed and assigned to different normal modes of vibration of the molecule. The calculated geometrical parameters show a strong intramolecular hydrogen bond with a N...O distance of 2.621-2.668 A. This bond length is shorter than that of its parent, 4-amino-3-penten-2-one (with two methyl groups in the beta-position), which is in agreement with spectroscopic results. The topological properties of the electron density contributions for intramolecular hydrogen bond in 3-amino-1-phenyl-2-buten-1-one and 4-amino-3-penten-2-one have been analyzed in term of the Bader theory of atoms in molecules (AIM). These results also support the stronger hydrogen bond in the title compound with respect to the parent molecule.  相似文献   

18.
This work deals with the IR and Raman spectroscopy of 4-(2-furanylmethyleneamino) antipyrine (FAP), 4-benzylideneaminoantipyrine (BAP) and 4-cinnamilideneaminoantipyrine (CAP) by means of experimental and quantum chemical calculations. The equilibrium geometries, harmonic frequencies, infrared intensities and Raman scattering activities were calculated by density functional B3LYP method with the 6-31G(d) basis set. The comparisons between the calculated and experimental results covering molecular structures, assignments of fundamental vibrational modes and thermodynamic properties were investigated. The optimized molecular geometries have been compared with the experimental data obtained from XRD data, which indicates that the theoretical results agree well with the corresponding experimental values. For the three compounds, comparisons and assignments of the vibrational frequencies indicate that the calculated frequencies are close to the experimental data, and the IR spectra are comparable with some slight differences, whereas the Raman spectra are different clearly and the strongest Raman scattering actives are relative tightly to the molecular conjugative moieties linked through their Schiff base imines. The thermodynamic properties (heat capacities, entropies and enthalpy changes) and their correlations with temperatures were also obtained from the harmonic frequencies of the optimized strucutres.  相似文献   

19.
The infrared and Raman spectra of 4-amino-3-penten-2-one and its two deuterated analogous have been measured. Comparison between the spectra recorded with two techniques, density functional theory (DFT) calculations and the spectral behavior upon deuteration was used for assignment of the vibrational spectra of the titled compound. DFT suggests a relatively strong intramolecular bent hydrogen bond with N...O distance in the range of 2.64-2.67 A, which is in agreement with the observed vNH at 3180 cm(-1). Existence of an intermolecular hydrogen bond is also shown in both solid and solution phases. The spectroscopic data support the enamine structure for this compound rather than imine structure.  相似文献   

20.
A parametric model of the intensities in the infrared spectra employing molecular polar parameters related with vibrational distortions of separate valence bonds is described. The parameters represent derivatives of the Cartesian components of the total dipole moment with respect to linear and angular coordinates describing the changes in length and orientation of each bond in a molecule. Matrix formulation is used throughout the mathematical procedure. The analysis results in determination of bond parametric vectors from the intensities of stretching modes, and bond parametric (3×3) matrices from the intensities of deformation modes. The application of the model in the interpretation of experimental infrared intensity data is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号