共查询到20条相似文献,搜索用时 46 毫秒
1.
鉴别局部特征分析及其在人脸识别中的应用 总被引:1,自引:0,他引:1
由于传统的鉴别主分量分析(DKL)算法中,主分量分析(PCA)基于全局特征,难以提取人脸的局部特性,该文提出鉴别局部特征分析算法.该算法中,局部特征分析(LFA)代替PCA作为线性鉴别分析(LDA)的前端.一方面,LFA在保留大部分全局信息的同时提取局部特征.另一方面,它为信号提供一种有效的低维表示,增强LDA在小样本问题中的数值稳定和推广性能.文中结合开集模式的人脸认证领域,在PoliceFace、OCRLab人脸库和它们的组合库上对新算法和DKL算法进行实验比较.实验表明,通过结合LFA和LDA,新算法明显降低认证错误率在PoliceFace库上,等错误点错误率降低43.10%;在OCRLab库上错误率降低25.87%;在组合库上错误率降低33.16%. 相似文献
2.
王小欧 《长春师范学院学报》2014,(1):40-44
将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用.对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人脸识别.基于Yale人脸数据库的实验显示,在相同训练样本和特征向量条件下,M-2DPCA... 相似文献
3.
提出一种新的人脸识别算法.首先,利用主动外观模型(active appearance model,AAM)提取人脸五官特征点,进而获得人脸区域的全局纹理特征;然后对人脸区域中的若干个局部子块进行加权局部二元模式(local binary pattern,LBP)的特征组合;接着分别对这两类特征进行最近邻法则匹配;最后,采用基于模糊综合的原理对这两大类特征进行数据融合,给出最终识别结果.实验表明该算法的有效性,能够很好地结合人脸图像全局和局部的互补信息,识别效果优于各单一模块的分类性能. 相似文献
4.
基于LBP和PCA特征提取的人脸识别 总被引:2,自引:0,他引:2
为有效解决局部二元模式(LBP)在人脸识别特征提取时维数过高的问题,提出了一种结合LBP特征和主成分分析(PCA)的人脸识别方法.首先,对人脸图像进行分块,提取其LBP直方图特征,然后使用PCA方法对特征向量进行降维,最后将降维后的特征向量用于识别.在FERET人脸库上的实验结果表明:相对于原始LBP表达方法,结合LBP和PCA的人脸表达能有效降低计算复杂度,同时也较好地保持了原有识别精度. 相似文献
5.
根据GIS设备绝缘缺陷放电形式和特点,设计了4种典型的GIS缺陷模型,构造了局部放电灰度谱图;针对GIS局部放电及其缺陷特点,提出一种基于局部放电图像的主分量分析一线性鉴别方法,即首先进行主分量分析,将数据从超高维空间降至低维空间,再提取统计不相关的最优鉴别矢量集,采用最小距离分类器进行模式识别,识别结果表明该方法对GIS各类模拟缺陷的正确识别率较高,效果良好. 相似文献
6.
卜婷 《淮阴师范学院学报(自然科学版)》2014,(3):226-230
局部敏感鉴别分析(LSDA)是一种基于向量学习的提取特征的算法,该算法使得属于同一类的相邻数据经投影后尽量靠近,但不同类的邻近数据则相远离.在实际应用中,由于小样本问题,通常先利用PCA算法对原始数据进行降维处理,然后再使用LSDA算法提取特征.然而,这种方法会丢掉一些重要的鉴别信息.提出了最大边距局部敏感鉴别分析(MM-LSDA)算法,直接从原始数据中提取特征,避免了鉴别信息的损失,同时使得同类中的近邻数据尽量靠近,而不同类之间的样本远离.在ORL和Yale人脸库上的仿真实验表明此算法更有效. 相似文献
7.
局部保留映射(locality preserving projections,LPP)选择人脸子空间特征包含非线性信息而不利于最近邻法分类.基于径向基函数(radial basis function,RBF)分类器可以将非线性可分问题转化为线性可分问题的特点,提出了利用LPP子空间和RBF网络相结合进行人脸识别的方法,LPP算法采用监督模式,RBF网络隐层中心采用正交最小二乘(orthogonal least—squares,OLS)法训练.实验结果表明,该方法在Yale—B和Yale—B Extended人脸数据库上的识别率为95.67%,在CMU—PIE人脸数据库上的识别率为98.52%,具有较好的抗噪能力,识别效果优于特征脸、Fisher脸以及拉普拉斯脸法. 相似文献
8.
李靖平 《浙江万里学院学报》2014,(2):93-98
文章将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用。对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人脸识别。基于Yale人脸数据库的实验显示,在相同训练样本和特征向量条件下,M-2DPCA比2DPCA算法具有更高的识别率。结论 M-2DPCA充分利用了图像的协方差信息,在人脸识别方面具有较高的识别率和鲁棒性方面,对进一步研究人脸识别具有重要的意义。 相似文献
9.
基于主分量特征与独立分量特征的人脸识别 总被引:1,自引:0,他引:1
PCA方法抽取出的主分量特征与ICA方法抽取出的独立分量特征是对原数据的两类不同描述.PCA是一种基于二阶统计的最小均方误差意义上的最优维数压缩技术,PCA方法所抽取特征的各分量之间是统计不相关的.ICA方法使用数据的二阶和高阶信息抽取数据的独立分量特征.文章对这两种方法做了理论上的比较,并通过实验证明ICA算法提取的特征子空间在人脸识别应用中更有效,识别率更高. 相似文献
10.
提出一种新的基于位平面图像的特征抽取方法.该方法通过对原始图像进行"位切片",将1幅图像分解为8幅位平面图像,然后针对不同的位平面图像的特点,对不同的单幅位平面图像和合成的位平面图像进行特征抽取,为从复杂的人脸图像中抽取出有效的鉴别特征提供了一种有效措施.ORL标准人脸库中的实验数据验证了该方法的有效性. 相似文献
11.
《南京师大学报(自然科学版)》2015,(1)
空域和频域分析是图像分析的重要方法,提出一种融合空域的局部二值模式(local binary pattern,LBP)和频域的局部相位量化(local phase quantization,LPQ)进行人脸识别的方法.该方法首先对人脸图像分别在空域提取LBP特征和频域提取LPQ特征,然后融合成LBP/LPQ直方图,进行直方图相似性比较,最后根据最近邻原则进行识别.在YALE和AR标准人脸数据库上的实验表明,该方法得到的结果比单个方法效果更好,鲁棒性更高. 相似文献
12.
复杂光照场景下图像局部特征提取一直是图像处理的研究热点,针对韦伯局部描述符(WLD)简单的量化方法以及方向特征提取不足,提出了一种新的图像局部特征描述符,称为各向异性韦伯二值模式(AWLBP)。该算法中WLD算子中的差分激励分量由引入尺度参量和角度参量后改进的各向异性LOG算子来代替,方向梯度分量由局部二值模式(LBP)来代替,将二者融合生成二维AWLBP直方图,然后转化为一维直方图,最后使用KNN分类器进行分类。算法在CMUPIE人脸数据库和Pho Tex纹理图像库的大量的实验中验证了其有效性和准确性。实验结果表明,提出的图像特征提取算法在复杂光照的场景下具有很高的有效性和鲁棒性。 相似文献
13.
人脸图像有效鉴别特征抽取与识别 总被引:1,自引:0,他引:1
基于具有统计不相关性的最优鉴别变换,分析了小样本识别问题,提出了抽取人脸图像有效鉴别特征方法,在Olivetti Research Laboratory(ORL)人脸图像库上得到了平均识别错误率为2.75%的实验结果,这是目前在ORL人脸图像数据库上所得到的最好的实验结果,并在南京理工大学NUST603人脸图像库上得到平均识别错误率为0.9%,的实验结果,这些结果表明所提出的人脸图有效鉴别特征方法 相似文献
14.
针对模式识别中如何提取信号有效特征的问题,对信号进行小波包分解,求取小波包局域判别基,提出求取局域判别基的各子空间的能量,形成特征矢量的特征提取方法。利用Fisher准则函数进行特征选择,得到识别特征矢量。在水声模式识别实例中应用此方法提取特征矢量进行分类实验,取得良好的分类效果,验证了该方法的有效性。 相似文献
15.
基于Gabor小波和局部二值模式的步态识别 总被引:1,自引:0,他引:1
利用步态对个人身份进行识别已经受到越来越多生物识别技术研究者的重视。步态能量图(GEI-Gait Energy Image)是一种有效的步态表征方法,Gabor小波能提取不同方向、不同尺度空间频率特征,因此,首先利用Gabor小波提取步态能量图不同方向、不同尺度的信息,得到其幅值谱图,再利用LBP来提取Gabor幅值谱图的局部信息,相对于LBP直接作用于步态能量图,能提取步态能量图更多方向、更多尺度的局部特征。最后,利用具有良好降维和辨识能力的辨识共同向量(DCV-Discriminant Common Vector)对提取的LBP特征进行维数约减和特征选择,只需利用简单的最近邻分类器就能取得较好的识别效果。该算法在中科院自动化所的CASIA数据库上面进行试验取得了较高的正确识别率。还针对步态识别中的小样本问题提出了一种样本扩充方法,解决了步态识别中的小样本问题,并提高了算法的识别率。 相似文献
16.
针对五官的局部特征,提出一种具体的识别方案。与传统弹性图匹配的方法相比,该方案提取的人脸局部的特征,大大降低了运算量,理论和实验都表明了该方案的可行性。在对人脸图像预处理之后,利用积分投影的方法,获取五官的位置,而后采用奇异值分解(SVD)去提取五官附近的局部特征,作为人脸的主要特征。比较了SVD和离散傅里叶变换(DFT)两种特征提取的方法,结果表明,通过SVD提取人脸的局部特征在减少计算量的基础上,能够很好保留人脸的特征,达到了较好的识别效果。 相似文献
17.
在人脸特征提取与选择方法的研究中,提出了以Zl-Zr法为基础,通过对特征分量判据J的计算,不断通过交替增加或剔除特征来得到优化解。同时,为了解决该方法存在的特征分量相关度和计算复杂度的问题,使用K-L变换法对n维原始特征组成的向量进行线性正交变换,以使特征在一个新的空间内不再相关。进而,再通过调整参数使得在进行特征选择时的计算复杂度大幅降低,使该方法的实用性提高。 相似文献
18.
人脸识别考勤系统中有效人脸特征提取 总被引:3,自引:0,他引:3
提出了一种适用于考勤系统的人脸识别算法.该算法首先从2台摄像机实时采集的正、侧面图像中分割出人脸区域,然后对图像中的人脸进行有效几何特征的提取,并构造出特征矢量与持卡者所持有的卡片中信息进行比对.经实验验证本系统算法简单、定位准确、识别率较高. 相似文献
19.
李丙春 《新疆师范大学学报(自然科学版)》2014,(4):79-84
特征提取是人脸识别的关键环节之一。文章首先简述了独立成分分析( Independent Component Analysis,ICA)的基本模型和原理,介绍了快速独立成分分析FastICA方法特征提取的一般过程。然后给出了FastICA算法中分离矩阵的并行计算算法。最后,利用ORL人脸图像数据库在Matlab环境下进行了仿真实验。实验结果表明,FastICA方法是一种有效的特征提取方法,并讨论了影响分类识别的几个因素。 相似文献
20.
刘嵩 《湖北民族学院学报(自然科学版)》2011,(2)
针对单一的人脸特征在识别中的局限性,提出了一种基于特征融合的人脸识别方法,首先利用主成分分析获得原始输入图像的特征脸,经图像重构处理得到原始图像的余像,然后抽取余像的特征脸,最后将两种特征脸按一定的权重融合成一个组合特征进行人脸识别,通过针对ORL人脸数据库的实验表明:该特征融合方法的人脸识别是行之有效的,优于传统特征脸的方法,识别率可以达到91.5%. 相似文献