首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
基于铅酸电池的实际应用以及对铅本身电化学行为的兴趣,人们对铅及其合金在硫酸溶液中形成的阳极膜,已做了大量的研究 ̄[1~4]。其三大进展为:Fleischmann与Thirsk ̄[5]提出成核与生长机理来解释β-PbO_2的形成;Pavlov ̄[6]采用光电化学方法研究PbO电位区的固相反应;Ruetschi ̄[7]提出阳极膜最外层PbSO_4为半透膜,保证膜内部的碱性环境。然而总的来说,各个研究者对铅阳极膜缺乏统一的认识。其主要原因是铅阳极膜相组成复杂,至今尚未完全确定。有鉴于此,我们将陆续介绍本小组对于硫酸溶液中铅阳极膜研究的几个问题所持的观点。  相似文献   

2.
模板合成法制备金纳米线的研究   总被引:26,自引:2,他引:24  
近年来,利用化学和物理方法制备各种高度有序的纳米结构材料已经成为学术界的研究热点之一.其中,在特定的模板中沉积各种材料而构建纳米点阵的方法,具有制备简便,成本较低等优点,而且在尺度上可以突破刻蚀技术的局限性,具有广泛的应用前景[1].常用的模板有阳极氧化多孔铝(AAO)、多孔硅和聚合物等,其中AAO模板具有耐高温,绝缘性好,孔洞分布均匀有序,而且大小可控等特点[2],是使用较为广泛的一种.利用阳极氧化铝为模板,采用电化学方法[3~7]或压差注入法[8]制备有序的纳米粒子点阵,已经在润滑[9]、电…  相似文献   

3.
铝金属基复合材料以其多方面的优异性能在航空、航天、汽车、电子和光学等工业领域中显示出了十分广泛的应用前景[1 ,2].某些种类的(如SiC颗粒增强)铝金属基复合材料已经开始走向工业规模的应用[3].然而,在铝金属基复合材料中由于增强体的存在使其内部组织结构极不均匀,在使用环境中极易形成腐蚀微电池而遭受点蚀、剥蚀、磨蚀等等腐蚀形式的破坏[4 ,5] .适用于常规铝合金防腐处理方法的阳极氧化法和铬酸盐化学氧化法(Alodine法)存在着下述弊端而不能对铝金属基复合材料起到有效的防腐作用:1)铝金属基复合…  相似文献   

4.
张新胜 《电化学》1999,5(1):106-110
Clark等[1]研究苯阳极氧化过程,认为二氧化铅是最合适的电极,苯是二级反应,苯在阳极上首先氧化为产物对苯二醌,产物可进一步氧化成马来酸,直至氧化成二氧化碳.但Ito[2]等研究表明苯阳极氧化还有一个并行反应:苯直接氧化为马来酸.Fleszar和P...  相似文献   

5.
几种稀土盐封闭的铝阳极氧化试样的腐蚀行为   总被引:4,自引:0,他引:4  
为提高铝硫酸阳极氧化膜的抗污染和防腐蚀性能,分别采用环境友好的铈盐、钇盐和镧盐溶液对阳极氧化膜进行了封闭处理。采用动电位极化法比较了不同稀土盐封闭的铝阳极氧化试样在弱酸性NaCl腐蚀介质中的电化学行为,采用扫描电子显微镜(SEM)和能量色散谱(EDS)对封闭试样腐蚀前后的表面形貌、组成进行了表征。结果表明:在腐蚀介质的侵蚀及强电化学极化条件下,铈盐和镧盐封闭的阳极氧化膜对铝基体具有较好的保护作用,而钇盐封闭膜的保护作用则较差。这种差别的主要原因是不同稀土盐封闭过程中封闭产物的析出倾向及速率不同。  相似文献   

6.
铈、锂盐对铝阳极氧化膜的协同封闭作用   总被引:11,自引:0,他引:11  
研究了铈、锂盐在铝阳极氧化膜封闭处理中的协同作用.场发射扫描电镜和X射线衍射谱对铈、锂盐协同封闭前后铝阳极氧化膜形貌和结构的研究结果表明,封闭后膜表面的孔洞消失,封闭产物分布均匀,封闭后膜仍然以非晶态形式存在.根据X射线光电子能谱的结果,封闭后的膜主要由含结晶水的Al2O3及铈、锂的混合氢氧化物组成,同时膜中还含有及封闭溶液组分中的一些阴离子.电化学阻抗谱的研究结果表明铈、锂盐协同封闭能够显著提高膜的耐蚀性能.在实验结果基础上,初步认为铈、锂盐封闭是通过生成结构紧密的封闭产物填充、覆盖膜孔,从而显著提高铝阳极氧化膜的耐蚀性能.  相似文献   

7.
石墨电极上硫化钠的阳极氧化机理探索   总被引:5,自引:0,他引:5  
电解硫化氢气体的碱性吸收液(Na2S表示)产生单质硫和氢气的研究是治理硫化氢废气的一种新方法[1 -7],较之Claus法有许多优点[3,4],这对环境保护和资源回收均具有重要的实际意义.文献对硫化物水溶液电化学氧化机理的研究主要着重于在某些贵金属阳极上,包括某些硫化矿的湿法冶金反应过程的研究[8,9],光电化学电池中使用多硫化物的研究[10 -13],以及硫化物电解时产生单质硫的电催化活性研究[14]等 ;但在石墨阳极上硫化物电化学氧化机理的研究报导却很少[3,4].本文研究在石墨阳极上硫化钠水溶液…  相似文献   

8.
铝的多孔阳极氧化自组织过程结晶度依赖特性   总被引:2,自引:0,他引:2  
电子束蒸发在硅衬底上的多晶铝膜多孔型阳极氧化得到的多孔列阵排布与体材料单晶铝氧化结果比较,有序度存在很大差异,导致这种差异的原因,除了氧化时间、应用电压、电解液等电化学参数外,新引入的结晶度将作为一重要因数影响自组织过程.结晶度的影响主要反映在晶粒间界区域相比于晶粒内部存在的铝原子浓度和阳极氧化反应速度涨落,这种涨落将通过干扰孔底电场的分布,对自组织过程产生微扰,由于微扰具有实时和随机性质,将使铝膜阳极氧化不再象体材铝那样,可以通过单一延长时间来最终改善孔排布的有序度.  相似文献   

9.
含镓、锡的铝合金在碱性溶液中的阳极行为   总被引:4,自引:0,他引:4  
铝的电极电位负,为一1.66V(VS.SHE),电化当量高(298Ah/g)是一种理想的阳板材料.但是由于铝在空气和水中表面形成一层致密的氧化膜,使其在中性溶液中处于钝化状态.而在酸性或碱性溶液中铝表面氧化膜就会被溶解破坏,与水直接反应,腐蚀中途难以中止.这一直是影响铝作为阳板材料应用和深入研究的障碍,特别是对铝阳极活化溶解机理的研究进展缓慢.虽然目前人们在铝中添加Ga、In、11、Zn、Sn、Mg、Hg等元素,研制出各种铝合金阳极,提高了铝阳极活化性能,但是这些研究本质上仍属于经验性的.到1983年Despic等人提出了“场…  相似文献   

10.
用金属氧化物前驱体法,在前处理阶段添加稀土再进行阳极氧化,获得了Nd和Ce改性的铝阳极氧化膜.稀土含量在靠近氧化膜/基体界面处达到0.9%左右,由内向外逐渐降低,氧化膜外表面处的含量约为0.5%.稀土前处理后制备得到的阳极氧化膜耐蚀性能比普通硫酸阳极氧化膜有明显提高,其中Ce改性的氧化膜作用尤为明显;经过NaCl溶液浸泡15 d以后,经稀土改性的阳极氧化膜仍然保持良好的耐腐蚀性.稀土引入后,阳极氧化膜的孔径变小,膜更加致密,显微硬度提高.XPS测试表明氧化膜中的稀土Ce以CeO2和Ce2O3形式存在,而Nd以Nd2O3形式存在.阻抗测试表明氧化膜阻挡层的阻抗值增大,说明稀土除了改变氧化膜生长机制外,也可能通过掺杂作用改变氧化膜结构.  相似文献   

11.
An anodic aluminum oxide (AAO) template is prepared by anodizing aluminum in oxalic acid solution. C60 crystals were grown, using the pressure difference method, in the pores of the template, representing a brushlike thin film layer with a honeycomb boundary structure in one side and nail arrays in the other side. Different Raman spectra of the C60 thin film from the both sides are presented, which indicate the different uniformly ordered structure character and the interface behavior of the C60 film on the surface with C60 crystals in the AAO nanopores. On the basis of energy and group theory, the strengthening of the Raman intensity and the broadening of Raman modes may imply that more transition spectral lines between vibration or rotation energy levels of C60 molecules were excited and detected.  相似文献   

12.
Zr–Al alloys containing up to 26 at.% aluminum, prepared by magnetron sputtering, have been anodized in 0.1 mol dm−3 ammonium pentaborate electrolyte, and the structure and dielectric properties of the resultant anodic oxide films have been examined by grazing incidence X-ray diffraction, transmission electron microscopy, Rutherford backscattering spectroscopy, and AC impedance spectroscopy. The anodic oxide film formed on zirconium consists of monoclinic and tetragonal ZrO2 with the former being a major phase. Two-layered anodic oxide films, comprising an outer thin amorphous layer and an inner main layer of crystalline tetragonal ZrO2 phase, are formed on the Zr–Al alloys containing 5 to 16 at.% aluminum. Further increase in the aluminum content to 26 at.% results in the formation of amorphous oxide layer throughout the thickness. The anodic oxide films become thin with increasing aluminum content, while the relative permittivity of anodic oxide shows a maximum at the aluminum content of 11 at.%. Due to major contribution of permittivity enhancement, the maximum capacitance of the anodic oxide films is obtained on the Zr–11 at.% Al alloy, being 1.7 times than on zirconium at the formation voltage of 100 V.  相似文献   

13.
An in situ study of the chemical properties of a polymerized silicon-carbon thin film has been completed. The deposited film was created by plasma enhanced chemical vapor deposition of trimethylsilane onto an aluminum substrate. Depth profiled X-ray photoelectron spectra were obtained. An analysis of the data shows varying chemistry throughout the film as well as an interaction between silicon and aluminum/aluminum oxide at the bi-layer interface.  相似文献   

14.
A method to quantify the composition of anodic oxide films on aluminum using Infrared Spectroscopic Ellipsometry (IRSE) is proposed. It consists of obtaining the absorption coefficient of the film as a function of wavelength. Using values of the absorption coefficients for the pure components of the film, the percentages (mole or wt%) of each component in the sample can be calculated.The method is demonstrated in a study of the structure of the oxide film on electropolished aluminum and the anodically formed barrier layer film. Both surface oxides were found to be initially a form of amorphous Al2O3. While the barrier film is essentially free of water as prepared, the film on electropolished aluminum contained about 25 wt% water. Hydration of both types of films by immersion in boiling water results in the formation of pseudoboehmite (AlOOH). The technique may have more general applicability to the quantitative determination of the composition of corrosion films and other surface layers on metals.  相似文献   

15.
X‐ray diffraction measurements were performed using synchrotron radiation at the SPring‐8 facility and electrochemical techniques to investigate the effect of polishing methods and storage conditions on the crystal structure of air‐formed oxide films and anodic oxide films formed on highly pure aluminum. Storage in an N2 environment hinders local film breakdown during anodizing, and it was established that the X‐ray diffraction measurements showed the presence of a γ‐Al2O3 in the anodic oxide film formed on mechanically polished (MP) specimens. Formation of γ‐Al2O3 during anodizing was inhibited by electropolishing because of the removal of the work‐hardened layer that was formed on the MP by electro‐polishing. The X‐ray diffraction results do not show clear differences in the influence of the polishing method on the crystal structure of air formed oxide film. This is due to the very fast oxidation rate of the air‐formed oxide film and very long storage times for the X‐ray measurements. The anodic oxide film formed on aluminum, which has a very flat surface, shows color and the color depended on grain orientation. The electrochemical impedance of the MP specimen is slightly lower than that of the mechanically and then electrochemically polished specimen at the middle frequency range. This impedance difference may be due to formation of γ‐Al2O3 in the amorphous anodic oxide film and the thickness of the film. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
通过磁控溅射并引入钛保护层, 利用在0.3 mol·L-1硫酸中20 V电压下二次阳极氧化, 在氧化铟锡(ITO)导电玻璃衬底上直接制备了超薄(约140 nm, 为阳极氧化前Al厚度的一半)、大面积(约4 cm2)的多孔阳极氧化铝(AAO). 扫描电子显微镜结果表明生成的微孔与衬底垂直, 孔径和孔间距分别约为30和60 nm. 我们发现钛保护层的作用是提高了Al层的附着性并且防止ITO被腐蚀, 在此体系中钛不能被其它的金属如铬、金、银或铜代替. 紫外-可见光谱透过率结果显示在阳极氧化过程中Ti被氧化成为透明的TiO2, 利用10-20 nm的钛保护层以及二次阳极氧化过程, 能够保证高透明度. 在ITO上直接制备的这种透明、有序的AAO纳米结构在光子学、光伏领域和纳米制备等方面具有潜在应用.  相似文献   

17.
AlSiFe phase can form microscopic galvanic couples that decrease corrosion resistance of 6063 aluminum which may influence the anodizing process. Two samples of 6063 aluminum were prepared. One sample was cut along the extrusion direction of the billet, and the other was cut perpendicular to the extrusion direction. Both samples exhibited the same characteristics, except for the distribution of the second phase AlSiFe. Both samples were subjected to anodizing treatments. Comparison between anodic oxide films was performed. The microstructure of Al substrates and anodic oxide films were examined using a scanning electron microscope, an optical microscope, and a glow discharge optical emission spectrometer. Results indicated that the thicknesses and elemental distributions of the anodic oxide films were almost the same. Moreover, the second phase AlSiFe influenced the anodic oxidation process, resulting in cavities in the anodic oxide film that affected its brightness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The rapid inward migration of fluoride ions in growing anodic titanium oxide under a high electric field has been elucidated by anodizing a Ti–12 at% silicon alloy, where film growth proceeds at nearly 100% efficiency in selected electrolytes. Further, incorporated silicon species in the anodic film are immobile, acting as marker species. The migration rate of fluoride ions is determined precisely by three-stage anodizing, consisting of initial anodic film formation at a constant current density to 50 V in ammonium pentaborate electrolyte, subsequent incorporation of fluoride ions by reanodizing to 55 V in ammonium fluoride electrolyte and, finally, anodizing again in ammonium pentaborate electrolyte at high current efficiency. The resultant films were analyzed by glow discharge optical emission spectroscopy to reveal the depth distribution of fluoride ions and the location of the silicon marker species. The fluoride ions migrate inward at twice the rate of O2− ions. Consequently, anodizing of titanium in fluoride-containing electrolytes develops a fluoride-rich layer that separates the alloy substrate from the anodic oxide, with eventual detachment of the film from the substrate.  相似文献   

19.
Highly pure aluminum specimens (99.99%) after electropolishing and DC-etching were covered with SiO2 films by electrophoretic sol-gel coating and were anodized in neutral boric acid/borate solutions. Time-variations in cell voltage during electrophoretic sol-gel coating and in anode potential during anodizing were monitored. Structure and dielectric properties of the anodic oxide films were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and electrochemical impedance spectroscopy (EIS). It was found that electrophoretic sol-gel coating forms uniform SiO2 films on the surface of both electropolished and DC-etched specimens. Anodizing of specimens after electrophoretic coating lead to the formation of anodic oxide films consisting of two layers: an inner alumina layer and an outer Al–Si composite oxide layer. The anodic oxide films formed, thus, had slightly higher capacitances than those formed on aluminum without any coating. Higher heating temperatures after electrophoretic deposition caused the increase in capacitance of anodic oxide films more effectively. Anodizing in a boric acid solution after SiO2 coating on DC-etched foil allowed the anode potential to reach a value higher than 1,000 V, resulting in 39% higher capacitances than those on specimens without SiO2 film. Dedicated to Professor Su-Il Pyun on the occasion of his 65th birthday.  相似文献   

20.
In this paper, we fabricate two kinds of anodic aluminum oxide (AAO) films with controllable nanopore size by changing electrolytes and electrolytic parameters. The first AAO film with a four-layer structure was fabricated by sequential anodization of aluminum in aqueous solution of H2SO4, H2C2O4, malonic acid, and tartaric acid at different anodic oxidation voltages. The average pore diameter of the as-prepared AAO film is 25 nm in the first layer, 54 nm in the second layer, 68 nm in the third layer, and 88 nm in the fourth layer, respectively. The pore densities of each layer decrease downwards to Al substrate, which are 300?×?108, 100?×?108, 21?×?108, and 6.9?×?108 cm?2, respectively. Furthermore, another AAO film with periodically changed pore diameter was fabricated by alternating anodization of aluminum in aqueous solution of H3PO4 and tartaric acid under galvanostatic mode. The anodization processes present approximately identical best ordering voltage (195 V) in H3PO4 and tartaric acid under galvanostatic mode. The pore diameter with periodic change can be enlarged through a pore-widening treatment. Both AAO films with special nanopore structures can be used not only as templates for preparing nano-array materials whose pore diameter presents periodic change or gradual increase, but also as nanofilters to separate materials in some special media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号