首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of rigid polyphenylene, free-base porphyrin-containing dendrimers terminated with either dimethoxybenzene or benzoquinone end-groups were prepared by a combined divergent and convergent synthesis. Unlike previous routes for preparing polyphenylene dendrimers that are incompatible with end-groups bearing certain functional moieties, the synthetic methodology chosen for this work enables incorporation of functional groups on the dendrimer end-groups during preparation of the dendrimer wedges and during synthesis of the final dendrimer. The basic strategy utilized a convergent preparation of dendrimer wedges using Suzuki coupling conditions, which were then either attached to a porphyrin core in a divergent coupling step or cyclized to form the porphyrin dendrimer in a convergent step. The latter approach was found to be more general and resulted in higher yields and more readily separated products. Steady-state absorption measurements for these dendrimers showed Soret and Q-band absorptions typical of free-base porphyrins. Preliminary steady-state fluorescence measurements of these dendrimers indicate quenching of the S1 state of the free-base porphyrin in all benzoquinone-containing dendrimers that is attributed to efficient electron-transfer from the excited porphyrin to the benzoquinone end-groups. The amount of fluorescence quenching was in good agreement with the number of benzoquinone groups at the dendrimer periphery and the distance between the porphyrin and benzoquinone groups as calculated by semiempirical (AM1) molecular orbital calculations.  相似文献   

2.
A novel parallel monomer combination approach to manipulating the architectural disposition of dendritic macromolecules is described. It harnesses the synthetic speed and power of the double-stage convergent growth approach and classical parallel synthesis to prepare diverse series of dendrimers that possess a predetermined number and arrangement of "internal" functional moieties. This methodology is applied for the preparation of a novel family of poly(benzyl ether) dendrimers possessing 1-15 "internal" allyloxy groups, which are displayed in a highly controlled, layer-specific, generational manner.  相似文献   

3.
A new synthetic approach leading to asymmetrically substituted polyphenylene dendrimers is presented. Following this method, polyphenylene dendrimers decorated with an increasing number of chromophores at the periphery have been obtained up to the second generation. Especially the synthesis of a polyphenylene dendrimer bearing three donor chromophores and one acceptor chromophore has been realized. Intramolecular energy transfer within this molecule is demonstrated by applying absorption and fluorescence measurements.  相似文献   

4.
A fluorescent and photoresponsive host based on rigid polyphenylene dendrimers (PPDs) has been synthesized. The key building block for the divergent dendrimer buildup is a complex tetracyclone 12 containing azobenzenyl, pyridyl, and ethynyl entities. The rigidity of polyphenylenes is of crucial importance for a site-specific placement of different functions: eight azobenzene (AB) moieties into the rigid scaffold, a fluorescent perylenetetracarboxdiimide (PDI) into the core, and eight pyridin functions into the interior cavities. AB moieties of host-1 undergo reversible cis-trans photoisomerization and are photostable, as confirmed by various techniques: UV-vis, (1)H NMR, size exclusion chromatography, and fluorescence correlation (FCS). In this system, AB moieties act as photoswitchable hinges and enable control over (i) molecular size, (ii) intramolecular energy transfer between AB and PDI, and (iii) encapsulation and release of guest molecules. The presence of PDI allows not only following the effect of cis-trans photoisomerization on molecular size with highly sensitive FCS but also monitoring the efficiency of the intramolecular energy transfer process (from AB to PDI) by time-resolved optical spectroscopy. Pyridyl functions were incorporated to facilitate guest uptake via hydrogen bonds between the host and guests. Also, we have demonstrated that the photoswitchability of the host can be utilized to actively encapsulate guest molecules into its interior cavities. This novel, light-driven encapsulation mechanism could enable the design of new drug delivery systems.  相似文献   

5.
Double‐layered dendritic carbosilanes were prepared containing phenylethynyl groups on the peripheral layer as well as propyleneoxy and ethenyl groups in the inner shell. The preparation of the allyloxy group containing dendrimers was made by the reaction of chlorosilylated dendrimers with allylalcohol in the presence of TMED. The dendrimers with ethynyl groups on each terminal arm were obtained by the reaction of the chlorosilyl group containing generations with lithium phenylethynyl. Subsequently, by iterative reactions such as hydrosilation and alkynylation as well as alcoholysis, dendritic macromolecules were generated to the fourth generation with 64 phenylethynyl groups on the peripheral layer. Different branching layers such as propyleneoxy and phenylethenyl groups constructed the inner shell of the fourth generation of the prepared dendrimers. The dendrimers were characterized by the use of nuclear magnetic resonance, infrared, size exclusion chromatography, differential scanning calorimetry, ultraviolet, and elemental analysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 764–774, 2000  相似文献   

6.
树形化合物的研究进展   总被引:1,自引:0,他引:1  
陈丽  姚仲麒 《有机化学》1996,16(3):201-208
本文介绍了一类高度支化、带有很多末端官能团的新的大分子化合物-树形物。在这类化合物合成中, 可以控制分子形状和分子量。文中还分类介绍了这类化合物的合成方法和潜在应用。  相似文献   

7.
Amphiphilic surface groups play an important role in many biological processes. The synthesis of amphiphilic polyphenylene dendrimer branches (dendrons), providing alternating hydrophilic and lipophilic surface groups and one reactive ethynyl group at the core is reported. The amphiphilic surface groups serve as biorecognition units that bind to the surface of adenovirus 5 (Ad5), which is a common vector in gene therapy. The Ad5/dendron complexes showed high gene transduction efficiencies in coxsackie-adenovirus receptor (CAR)-negative cells. Moreover, the dendrons offer incorporation of new functions at the dendron core by in situ post-modifications, even when bound to the Ad5 surface. Surfaces coated with these dendrons were analyzed for their blood-protein binding capacity, which is essential to predict their performance in the blood stream. A new platform for introducing bioactive groups to the Ad5 surface without chemically modifying the virus particles is provided.  相似文献   

8.
袁建军  翟锦  江雷 《化学进展》2004,16(4):500-507
本文主要综述了基于特定分子设计的有机大分子导向下的无机纳米粒子的分级有序自组装.可以有效导向无机纳米粒子组织的有机大分子主要包括合成大分子和生物大分子,前者如具有氢键识别功能的大分子、聚电解质、嵌段大分子、树枝状大分子;后者如DNA、糖类以及蛋白质.所涉及的无机纳米粒子通常需要通过单层修饰使之与特定的大分子具有识别功能,或者设计表面带有正或负电荷使之与带有负或正电荷的大分子相互识别.该领域的研究在先进功能材料及仿生材料方面具有重要意义.  相似文献   

9.
The surface properties were studied for the powders of the first- and second-generation polyphenylene dendrimers based on tetrakis(4-ethynylphen-1-yl)methane and the powders of the first- and third-generation dendrimers based on 1,3,5-triethylbenzene. The studied substances have low specific surface areas. The similarity in the surface properties of rigid-chain dendrimers whose branched macromolecules have an extended spatial structure is discussed.  相似文献   

10.
Sequential incorporation of a variety of functional groups forms the basis for specificity in biomacromolecules. Introduction of such diversity and sequencing ability in artificial macromolecules is fundamentally interesting. In this paper, three different synthetic approaches have been used to build dendrons and dendrimers in which all the monomer units are different from each other. The synthetic strategies described in this paper involve the use of (i) an ABB(p) monomer, (ii) an ABB' monomer, and (iii) an ABB(m) monomer. The complementarity and the versatility of these synthetic approaches should render them useful for a variety of applications.  相似文献   

11.
Amphiphilic surface groups play an important role in many biological processes. The synthesis of amphiphilic polyphenylene dendrimer branches (dendrons), providing alternating hydrophilic and lipophilic surface groups and one reactive ethynyl group at the core is reported. The amphiphilic surface groups serve as biorecognition units that bind to the surface of adenovirus 5 (Ad5), which is a common vector in gene therapy. The Ad5/dendron complexes showed high gene transduction efficiencies in coxsackie‐adenovirus receptor (CAR)‐negative cells. Moreover, the dendrons offer incorporation of new functions at the dendron core by in situ post‐modifications, even when bound to the Ad5 surface. Surfaces coated with these dendrons were analyzed for their blood‐protein binding capacity, which is essential to predict their performance in the blood stream. A new platform for introducing bioactive groups to the Ad5 surface without chemically modifying the virus particles is provided.  相似文献   

12.
The efficient synthesis of new asymmetric poly(phenylenevinylene) dendritic macromolecules using a stepwise convergent-growth approach is described. By an iterative methodology that made use of the Horner-Wadsworth-Emmons (HWE) reaction, dendrons and dendrimers up to the third generation, with eight different functional groups located at the periphery, were prepared in good yields. Both the number and placement of functionalities can be accurately controlled to afford a large variety of dendritic architectures.  相似文献   

13.
Dendrimers are highly branched and monodisperse macromolecules that display an exact and large number of functional groups distributed with unprecedented control on the dendritic framework. Based on their globular structure, compared to linear polymers of the same molecular weight, dendrimers are foreseen to deliver extraordinary features for applications in areas such as cancer therapy, biosensors for diagnostics and light harvesting scaffolds. Of the large number of reports on dendrimer synthesis only a few have reached commercial availability. This limitation can be traced back to challenges in the synthetic paths including a large number of reaction steps required to obtain dendritic structures with desired features. Along with an increased number of reaction steps come not only increased waste of chemical and valuable starting materials but also an increased probability to introduce structural defects in the dendritic framework. This tutorial review briefly covers traditional growth approaches to dendrimers and mainly highlights accelerated approaches to dendrimers. A special focus capitalizes on the impact of the click chemistry concept on dendrimer synthesis and the promise it has to successfully accomplish highly sophisticated dendrimers, both traditional as well as heterofunctional, in a minimum number of chemical steps. It is clear that accelerated synthetic approaches are of greatest importance as these will encourage the scientific community to synthesize and access dendrimers for specific applications. The final goal of accelerated synthesis is to deliver economically justified dendritic materials for future applications without compromising the environmental perspective.  相似文献   

14.
The hydrodynamic properties of pyridine-containing polyphenylene dendrimers of the third and fourth generations in chloroform are studied by photon correlation spectroscopy and viscometry. It has been demonstrated that the hydrodynamic characteristics of these macromolecules in dilute solutions are similar to those of nondraining spheres. The hydrodynamic radius of these dendrimers is shown to be proportional to their molecular mass to a power of 1/3. It has been established that the macromolecules of the dendrimers under examination in solutions conserve the conformation and size over a wide temperature range. The detailed analysis of hydrodynamic data allowed a conclusion concerning an extremely low content of the polymer inside the equivalent sphere for the above dendrimers in solutions. The compounds of interest may be referred to as rigid dendritic systems.  相似文献   

15.
Dendrimers are a new class of artificial macromolecules with well-defined hyperbranched structures which enable bio-active molecules such as drugs to be presented in a highly multi-valent fashion. Covalent conjugation of drugs to the surface of dendrimers can be easily achieved either by direct chemical reactions between dendrimers and drug molecules including esterification and amidation or through cleavable linkers, depending on the functional groups on the surface of dendrimers. The pharmacological properties of these dendrimer-based prodrugs such as biocompatibility, biodistribution, biostability, bioadhesion and biopermeability can be modulated by further modifying dendrimers with specific functional molecules to fit a specific medicinal purpose. In this mini-review, recent advances on the use of dendrimers as prodrug nano-scaffolds were briefly demonstrated. The design and synthesis of dendrimer-based prodrugs as well as screening their intrinsic properties in biological systems were fully discussed.  相似文献   

16.
Chemists' fascination with dendrimers mainly originates from their unique architecture and its exploitation for the design of well‐defined functional macromolecules. Depending on the nature of the synthesis, functionalization is traditionally introduced at the core, the periphery, or both. However, the specific incorporation of functional groups at the interior layers, i.e., generations, represents a considerable synthetic hurdle that must be overcome for the full potential of dendrimers to be realized. This review covers recent advances in this emerging frontier of dendrimer science with a particular focus on covalent modifications. Monomer design, syntheses, and properties of various dendritic backbone types are discussed. Internal functionalization dramatically increases the degree of complexity that can be implemented into a dendrimer macromolecule and, therefore, promises to lead to smart materials for future applications in bio‐ and nanotechnologies. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1047–1058, 2003  相似文献   

17.
A series of first-generation polyphenylene dendrimers based on three different cores were prepared by Diels-Alder cycloaddition and their single-crystal structures were determined. Consisting exclusively of interlocked, twisted phenyl rings, these polyphenylene nanostructures have exciting structural and dynamic properties. Single crystals of dendrimers, suitable for X-ray structure analysis, were grown from different solvent mixtures by slow evaporation at room temperature. It should be pointed out that one of the described polyphenylene dendrimers represents up to now the biggest oligophenylene nanostructure from which crystallographic data is available.  相似文献   

18.
Several types of substituted carbosilane-based dendrimers are studied in comparison with polyamidoamine (PAMAM), using molecular mechanics approach, to evaluate the shape and steric interactions when the generation number (G) increases. A scaled van der Waals energy parameter: the scaled steric energy, is defined, and used, to compare the steric repulsion in these dendrimers. Our calculations indicate that the steric repulsions, between the end groups at the surface of dendrimers, do not increase for higher generations of such macromolecules. Density calculations show that this property decreases with the increase of G. The moment of inertia calculations show that the shape of the considered dendrimers is asymmetrical for lower generations and becomes spherical at higher generations. The shape of the carbosilane dendrimers is more spherical than PAMAM. The results show that higher generations can afford the increased number of terminal groups at the surface of the macromolecules, without increase of the density in this region, therefor these factors (steric repulsion between the end groups at the surface, or high density) would not impede the chemistry to build higher generations of completely branched dendrimers.  相似文献   

19.
Based on the growing demand for facile and sustainable synthetic methods to structurally perfect polymers, we herein describe a significant improvement of esterification reactions capitalizing on 1,1′‐carbonyldiimidazole (CDI). Cesium fluoride was shown to be an essential catalyst for these reactions to reach completion. This approach was successfully applied to the synthesis of structurally flawless and highly functional polyester dendrimers employing traditional and accelerated growth strategies. A sixth generation bis‐MPA dendrimer with a molecular weight of 22.080 Da and 192 peripheral hydroxy groups was isolated in less than one day of total reaction time. Large quantities of dendrimerswere obtained in high yields (>90 %) using simple purification steps under sustainable conditions. The fluoride‐promoted esterification (FPE) via imidazolide‐activated compounds is wide in scope and constitutes a potentially new approach toward functional polymers and other materials.  相似文献   

20.
The electroreduction of functionalized aryldiazonium salts combined with a protection-deprotection method was evaluated for the fabrication of organized mixed layers covalently bound onto carbon substrates. The first modification consists of the grafting of a protected 4-((triisopropylsilyl)ethynyl)benzene layer onto the carbon surface on which the introduction of a second functional group is possible without altering the first grafted functional group. After deprotection, we obtained an ultrathin robust layer presenting high densities of both active ethynylbenzene groups (available for "click" chemistry) and the second functional group. The strategy was successfully demonstrated using azidomethylferrocene to react with ethynyl moieties in the binary film by "click" chemistry, and NO(2)-phenyl as the second functional group. Two possible modification pathways with different orderings of the various steps were considered to show the influence and importance of the protection-deprotection process on the final surface obtained. Using mild conditions for the grafting of the second layer maintains a concentration of active ethynyl groups similar to that obtained for a one-component monolayer while achieving a high surface concentration of the second modifier. Considering the wide range of functional aryldiazonium salts that could be electrodeposited onto carbon surfaces and the versatility and specificity of the "click" chemistry, this approach appears very promising for the preparation of mixed layers in well-controlled conditions without altering the reactivity of either functional group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号