首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We recently noted [R. K. Harris, P. Hodgkinson, V. Zorin, J.-N. Dumez, B. Elena, L. Emsley, E. Salager, and R. Stein, Magn. Reson. Chem. 48, S103 (2010)] anomalous shifts in apparent (1)H chemical shifts in experiments using (1)H homonuclear decoupling sequences to acquire high-resolution (1)H NMR spectra for organic solids under magic-angle spinning (MAS). Analogous effects were also observed in numerical simulations of model (13)C,(1)H spin systems under homonuclear decoupling and involving large (13)C,(1)H dipolar couplings. While the heteronuclear coupling is generally assumed to be efficiently suppressed by sample spinning at the magic angle, we show that under conditions typically used in solid-state NMR, there is a significant third-order cross-term from this coupling under the conditions of simultaneous MAS and homonuclear decoupling for spins directly bonded to (1)H. This term, which is of the order of 100 Hz under typical conditions, explains the anomalous behaviour observed on both (1)H and (13)C spins, including the fast dephasing observed in (13)C{(1)H} heteronuclear spin-echo experiments under (1)H homonuclear decoupling. Strategies for minimising the impact of this effect are also discussed.  相似文献   

2.
青蒿素的二维核磁共振研究   总被引:1,自引:0,他引:1  
黄敬坚  NICHOLLS  K.M  陈朝环  汪猷 《化学学报》1987,45(3):305-308
报导了采用二维核磁共振技术研究青蒿素的核磁氢谱和碳谱的谱线归属,以今后为^1^3C中间体的生物转化产物提供鉴定的基础.  相似文献   

3.
Two-dimensional 1H NMR experiments that achieve band-selective, homonuclear decoupling in both the indirectly detected F1 and directly detected F2 dimensions were used to assign the highly overlapped 1H NMR spectrum of the peptide Ac-SRGKARVRAKVKDQTK-NH2, both free in solution and bound to heparin. Band-selective, homonuclear decoupling during the evolution period was achieved using a double pulsed field gradient spin-echo (DPFGSE) with semi-selective shaped pulses; band-selective, homonuclear decoupling during the acquisition period was achieved by time-shared semi-selective shaped pulse decoupling. Regular TOCSY, ROESY and NOESY spectra and TOCSY, ROESY and NOESY spectra measured with band-selective, homonuclear decoupling in the evolution (F1) dimension (BASHD-TOCSY, ROESY and NOESY spectra) and with band-selective, homonuclear decoupling in both the F1 and F2 dimensions (D-(or Double)-BASHD-TOCSY, ROESY and NOESY spectra) are reported and compared for the peptide and its heparin complex. Complete assignment of the 1H-NMR spectra of the free and heparin-complexed peptide was achieved with the high resolution of the D-BASHD-TOCSY, ROESY and NOESY spectra. Characterization of the heparin-complexed peptide is of interest because of the ability of the peptide to neutralize the anticoagulant activity of heparin.  相似文献   

4.
本文用核磁共振方法对氨基糖苷类化合物巴龙霉素(Paromomycin)进行了研究, 归属了其^H、^1^3C的全部谱线, 讨论了巴龙霉素在水溶液中的优势构象。  相似文献   

5.
Broadband homonuclear decoupling of proton spectra, that is, the collapse of all multiplets into singlets, has the potential of boosting the resolution of 1H NMR spectra. Several methods have been described in the last 40 years to achieve this goal. Most of them can only be applied in the indirect dimension of multi‐dimensional NMR spectra or special data processing is necessary to yield decoupled 1D proton spectra. Recently, complete decoupling of proton spectra during acquisition has been introduced; this not only significantly reduced the experimental time to record these spectra, but also removed the need for any sophisticated processing schemes. Here we present an introduction and overview of the techniques and applications of broadband proton‐decoupled proton experiments.  相似文献   

6.
Wu G  Wasylishen RE 《Inorganic chemistry》1996,35(11):3113-3116
The first observations of (31)P-(31)P indirect spin-spin (J) coupling in copper(I) phosphine complexes are reported for solid Cu(PPh(3))(2)X (X = NO(3)(-), BH(4)(-)). Values of (2)J((31)P,(31)P), 157 +/- 5 and 140 +/- 5 Hz for Cu(PPh(3))(2)NO(3) and Cu(PPh(3))(2)BH(4), respectively, have been obtained from two-dimensional (2D) J-resolved (31)P NMR spectra obtained under slow magic-angle spinning (MAS) conditions. In both complexes, the two phosphine ligands are crystallographically equivalent; thus, the two (31)P nuclei have identical isotropic chemical shifts. Under rapid sample spinning conditions, the (31)P MAS NMR spectra exhibit relatively sharp overlapping asymmetric quartets arising from (1)J((63/65)Cu,(31)P) and residual (63/65)Cu-(31)P dipolar interactions. No evidence of (2)J((31)P,(31)P) is apparent from the spectra obtained with rapid MAS; however, under slow MAS conditions there is evidence of homonuclear J-recoupling. Peak broadening due to heteronuclear dipolar interactions precludes measurement of (2)J((31)P,(31)P) from standard 1D (31)P MAS NMR spectra. It is shown that this source of broadening can be effectively eliminated by employing the 2D J-resolved experiment. For the two copper(I) phosphine complexes investigated in this study, the peak widths in the f(1) dimension of the 2D J-resolved (31)P MAS NMR spectra are about three times narrower than those found in the corresponding 1D (31)P MAS NMR spectra.  相似文献   

7.
The proton NMR spectra of fluorine-substituted benzamides are very complex (Figure 1) due to severe overlap of (1)H resonances from the two aromatic rings, in addition to several short and long-range scalar couplings experienced by each proton. With no detectable scalar couplings between the inter-ring spins, the (1)H NMR spectra can be construed as an overlap of spectra from two independent phenyl rings. In the present study we demonstrate that it is possible to separate the individual spectrum for each aromatic ring by spin system filtering employing the multiple-quantum-single-quantum correlation methodology. Furthermore, the two spin states of fluorine are utilized to simplify the spectrum corresponding to each phenyl ring by the spin-state selection. The demonstrated technique reduces spectral complexity by a factor of 4, in addition to permitting the determination of long-range couplings of less than 0.2 Hz and the relative signs of heteronuclear couplings. The technique also aids the judicious choice of the spin-selective double-quantum-single-quantum J-resolved experiment to determine the long-range homonuclear couplings of smaller magnitudes.  相似文献   

8.
High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.  相似文献   

9.
A homonuclear dipolar decoupling scheme based on windowed phase-modulated Lee-Goldburg (wPMLG) pulse sequences that causes a"z-rotation" of the spins for high-resolution proton NMR spectroscopy of solids is described and analyzed. This supercycled scheme suppresses the effect of pulse imperfections on the spectra and significantly relaxes the off-resonance dependence of the line-narrowing efficiency and scale factor. This leads to a broad spectral window that is free of artifacts such as zero lines, image peaks, and localized rotor-radio-frequency resonances. High-resolution (1)H spectra and two-dimensional homonuclear (1)H-(1)H correlation spectra of standard amino acids, obtained by a combination of this supercycled scheme with magic angle spinning frequencies up to 25 kHz, are demonstrated.  相似文献   

10.
The proton and carbon-13 NMR spectra of 2,3,6 -tri-O-methyl-β-cyclodextrin in deuteriochloroform have been fully and unambiguously assigned using homonuclear and selective heteronuclear spin decoupling and two-dimensional homo- and heteronudear correlation NMR spectroscopy. Corrections are made to some earlier literature assignments.  相似文献   

11.
The thermodynamic products (ε‐lactams) of the degradation of ten different spirocyclic oxaziridines were analyzed by 1H and 13C NMR spectroscopy. The preferred conformations were determined by examining the homonuclear spin–spin coupling constant and the chemical shift effects of the N‐substituent and the alkyl group of the aliphatic ring on 1H and 13C NMR spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
N-Benzyl-substituted complexes [(triazacyclohexane)Ni(NCMe)3](BF4)2 and their diamagnetic zinc analogues have been prepared and characterized by X-ray crystallography. The T1 spin decoupling observed in their paramagnetic 13C NMR spectra can be quantitatively described by newly derived expressions that allow an independent determination of T2 of the 13C signal, T1 of the attached H or F, and the 1J coupling constant by line shape analysis.  相似文献   

13.
An array of NMR spectroscopy experiments have been carried out to obtain conformationally dependent (1)H,(13)C- and (13)C,(13)C-spin-spin coupling constants in the trisaccharide α-L-Rhap-(1 → 2)[α-L-Rhap-(1 → 3)]-α-L-Rhap-OMe. The trisaccharide was synthesized with (13)C site-specific labeling at C2' and C2″, i.e. in the rhamnosyl groups in order to alleviate (1)H spectral overlap. This facilitated the measurement of a key trans-glycosidic proton-proton cross-relaxation rate using 1D (1)H,(1)H-T-ROESY experiments as well as a (3)J(C, H) coupling employing 1D (1)H,(13)C-long-range experiments, devoid of potential interference from additional J coupling. By means of both the natural abundance compound and the (13)C-labeled sample 2D (1)H,(13)C-J-HMBC and (1)H,(13)C-HSQC-HECADE NMR experiments, total line-shape analysis of (1)H NMR spectra and 1D (13)C NMR experiments were employed to extract (3)J(C, H) , (2)J(C, H), (3)J(C, C), and (1)J(C, C) coupling constants. The (13)C site-specific labeling facilitates straightforward determination of (n)J(C, C) as the splitting of the (13)C natural abundance resonances. This study resulted in eight conformationally dependent coupling constants for the trisaccharide and illustrates the use of (13)C site-specific labeling as a valuable approach that extends the 1D and 2D NMR methods in current use to attain both hetero- and homonuclear spin-spin coupling constants that subsequently can be utilized for conformational analysis.  相似文献   

14.
The REDOR and CPMAS techniques are applied for measuring 13C-15N dipolar coupling constants in glycine. It is shown that the selective CP or SPECIFIC CP technique removes the coherent evolution of the spin system under homonuclear 13C-13C J couplings. While the large coupling constant (approximately 900 Hz) is readily determined because of the presence of large oscillations in the CPMAS dynamics, their absence precludes the measurement of the small coupling constant (approximately 200 Hz). The experimental results and numerical simulations demonstrate that the determination of 13C-15N coupling constants of medium size (<1 kHz) by the CPMAS technique is mainly limited by the strength of the 1H decoupling field and the size of the 13C and 15N chemical shift anisotropies.  相似文献   

15.
In the present work we demonstrate a novel method for spectral simplification and determination of the relative signs of the scalar couplings using a spin selective multiple quantum NMR experiment. A spin selective excitation of double quantum coherence of A and M spins in a weakly coupled three spin system of the type AMX, results in a doublet in the double quantum dimension whose separation corresponds to the sum of couplings of the active spins to the passive spin X. One component of the doublet has the passive spin X in mid R:alpha state while the other component has the passive spin X in mid R:beta state. The spin selective conversion of double quantum coherence to single quantum coherence does not disturb the spin states of the passive spin thereby providing the spin state selection. There will be two domains of single quantum transitions in single quantum dimension at the chemical shift positions of A and M spins. The mid R:alpha domain of A spin is a doublet because of mid R:alpha and mid R:beta states of M spin only, while that of mid R:beta domain is another doublet in a different cross section of the spectra. The scalar coupling J(AM) can be extracted from any of the mid R:alpha and mid R:beta domain transitions while the relative displacements of the two doublets between the two domains at the two chemical shifts provides the magnitude and sign of the scalar coupling J(AX) relative to the coupling J(MX). Similar result is obtained for zero quantum studies on AMX spin system. The proposed technique is discussed theoretically using product operator approach. The new spin state selective double quantum J-resolved sequence has also been developed. The methodology is confirmed experimentally on a homonuclear weakly coupled three spin system and applied to two different heteronuclear five spin systems.  相似文献   

16.
A complete analysis of (1)H and (13)C NMR spectra of the trypanocidal sesquiterpene lactone eremantholide C and two of its analogues is described. These structurally similar sesquiterpene lactones were submitted to (1)H NMR, (13)C {(1)H} NMR, gCOSY, gHSQC, gHMBC, J-resolved and DPFGSE-NOE NMR techniques. The detailed analysis of those results, correlated to some computational calculations (molecular mechanics), led to the total and unequivocal assignment of all (1)H and (13)C NMR data. The determination of all (1)H/(1)H coupling constants and all signal multiplicities, together with the elimination of previous ambiguities were also achieved.  相似文献   

17.
A semi-selective 2D HMBC experiment is described which yields high-resolution in the indirect carbon-13 dimension by suppressing homonuclear proton coupling modulations and so provides an NMR technique suitable for the structure elucidation of organic compounds which exhibit particularly crowded carbon-13 spectra.  相似文献   

18.
We study the variation of 13C spectra as function of off-resonances in protons during decoupling, for continuous wave (cw) and small phase incremental alternation with 64-step (SPINAL-64) schemes in the liquid crystals 4-n-octyl-4'-cyanobiphenyl (8CB) and 4-n-pentyl-4'-cyanobiphenyl (5CB). The self-decoupling mechanism induced by the strong homonuclear dipolar interactions provides a method to study the dynamics of the proton system through the 13C spectra. In the n-cyanobiphenyl (nCB) liquid crystals each nonquaternary carbon is coupled through dipolar interactions to more than one proton constituting a SI(N) group (with N> or =2). We extend the analytical treatment of the variation of the 13C spectrum with the off-resonance, described for SI groups, to SI(N) under cw decoupling. The dependence of the maxima of the 13C spectra as a function of proton off-resonance follows a Lorentzian line that depends on the rate of exchange among proton spin states. From the fitting parameters of this curve and the heteronuclear interaction measured in cross-polarization experiments, we extract dynamical information of the intramolecular 1H-1H interactions. In the case of SPINAL-64 we experimentally observe the same behavior. Under both kinds of decouplings, we characterize the chemical shift of the protons through the NMR spectra of carbons. The resulting values are in very good agreement with those obtained by other methods.  相似文献   

19.
In this paper we present a complete 1H and 13C NMR spectral analysis of three lignan lactones (methylpluviatolide, dimethylmatairesinol and hinokinin) by the use of techniques such as COSY, HMQC, HMBC and J-resolved. Complete assignment and all homonuclear hydrogen coupling constant measurements were performed, providing enough data also to the confirmation of the relative stereochemistry.  相似文献   

20.
We describe solid-state NMR homonuclear recoupling experiments at high magic-angle spinning (MAS) frequencies using the radio frequency-driven recoupling (RFDR) scheme. The effect of heteronuclear decoupling interference during RFDR recoupling at high spinning frequencies is investigated experimentally and via numerical simulations, resulting in the identification of optimal decoupling conditions. The effects of MAS frequency, RF field amplitude, bandwidth, and chemical shift offsets are examined. Most significantly, it is shown that broadband homonuclear correlation spectra can be efficiently obtained using RFDR without decoupling during the mixing period in fully protonated samples, thus considerably reducing the rf power requirements for acquisition of (13)C-(13)C correlation spectra. The utility of RFDR sans decoupling is demonstrated with broadband correlation spectra of a peptide and a model protein at high MAS frequencies and high magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号