首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A diet rich in polyphenolic compounds has recognized health benefits, and as such is routinely monitored as part of dietary intervention studies. A method for the simultaneous determination of 36 phenolic compounds, including phenolic acids and flavonoids, using liquid chromatography and tandem mass spectrometry is described here. The target analytes were quantified based on their specific mass spectral fragments using a selected reaction monitoring approach. A C18 column with embedded aromatic functionality ensured separation of all phenolic compounds studied which included several pairs of isomers. Sample preparation involved the use of β‐glucuronidase to release the phenolic compounds from their conjugated forms. The intra‐day and inter‐day precision and accuracy was less than 7% for all phenolic compounds studied. Recoveries, where plasma was spiked with three different concentrations of the analytes, ranged from 95–115%. The limits of detection and quantification were 0.23–3.89 and 1.15–7.79 nM, respectively. The method was successfully applied to real samples and the range reported for each phenolic compound, with the exception of hydroferulic acid, nordihydroguaiaretic acid, methylgallate, and m‐coumaric acid, was at least an order of magnitude higher than the limit of quantification for the method.  相似文献   

3.
MK-0767, 5-[2,4-dioxothiazolidin-5-yl)methyl]-2-methoxy-N-[[(4-trifluoromethyl)phenyl]methyl]benzamide (I, Table 1), is a dual peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist previously studied for the treatment of type 2 diabetes and dyslipidemia. To support further toxicological studies in one of the animal species used in chronic testing of I, a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the simultaneous quantification of I and seven metabolites in rat urine was developed and validated. In this method, urine samples were diluted with acetonitrile/methanol (50:50, v/v) and injected directly onto the column of an LC system. Detection was achieved by MS/MS using a turbo ion spray probe monitoring precursor --> product ion combinations in selected reaction monitoring (SRM) mode. The linear range for I and three metabolites was 0.8-800 ng/mL, and 8-8000 ng/mL for four other metabolites found to be present in urine at higher concentrations than I. Intra-day and inter-day variation using this method were < or = 13.0%. The method exhibited good linearity, reproducibility, specificity and sufficient sensitivity when used for the analysis of rat urine samples. Concentrations of I and its major metabolites in rat urine were determined in samples collected between 0-24 h after dosing on the last day of administration of nine daily oral doses to three male (1000 mg/kg/day) and three female (300 mg/kg/day) Sprague-Dawley rats. The urinary concentrations of I and its metabolites were similar in male and female rats. The average concentrations of I were 0.51 and 0.33 microg/mL in male and female rats, respectively. Concentrations of four of the seven metabolites quantified were 6- to 45-fold higher than those of I. The most abundant metabolite, with concentrations of 24.2 and 13.3 microg/mL in male and female rat urine, respectively, was a methyl sulfoxide derivative formed by oxidative cleavage of the thiazolidinedione ring, followed by S-methylation and oxidation of the sulfide intermediate.  相似文献   

4.
The work presented here deals with the development of a quantitative tool for the simultaneous determination of sulfamethoxypyrazine (sulfalene)/pyrimethamine in plasma. The chromatography used only takes 12.5 min, allowing a fast sample turnover time. Relative standard deviation of retention times was never above 3.48% (n = 66). Adequate sample clean-up was achieved by a simple and relatively fast liquid/liquid extraction. In this way, ionisation suppression effects, typical for more simple sample clean-up procedures, could be avoided resulting in absolute plasma effects of maximum -17.1% for sulfalene, -16.1 for the internal standard (IS), and 12% for pyrimethamine. For both pyrimethamine and sulfalene, quadratic calibration curves from 0.00101 to 0.807 microg/mL for pyrimethamine and from 0.271 to 216 microg/mL for sulfalene gave the best fit. Mean coefficients of determination (R2) were 0.9951 (n = 6, CV% 0.39) for pyrimethamine and 0.9942 (n = 6, CV% 0.13) for sulfalene. Precision was below 9.35% for pyrimethamine and 13.9% for sulfalene. Inaccuracy remained below 15% at all cases. The optimised method was used for a time-course study of the sulfalene/pyrimethamine combination concentration in plasma of patients treated with Co-Arinate, a new curative antimalaria-medicine.  相似文献   

5.
A method has been devised with the capacity to extend the linear dynamic range of a triple quadrupole mass spectrometer operated in the selected reaction monitoring (SRM) mode of analysis. This extended range experiment can be realized by simultaneously acquiring variably sensitive data, via collision energy adjustment, for the same precursor-to-product ion transition within a single SRM method. While this method can be applied universally to many different study types without any detrimental effect to the analysis or throughput, it was applied herein to acquire and quantify, within a single analysis, the concentrations of GSK-A in a multiple-dose rodent study, that previously required a dilution scheme. Using this methodology, the linear dynamic range of GSK-A was increased over traditional methods by nearly two orders of magnitude, from 2.00-10,000 ng/mL to 0.500-100,000 ng/mL.  相似文献   

6.
Anastrozole (2,2'-[5-(1H-1,2,4-triazol-1-ylmethyl)-1.3-phenylene]bis(2-methylpropionitrile)) and exemestane (6-methylenandrostan-1,4-diene-3,17-dione) are therapeutically used to treat hormone-sensitive breast cancer in postmenopausal women. For doping purposes they may be used to counteract adverse effects of an extensive abuse of anabolic androgenic steroids (gynaecomastia) and to increase plasma testosterone concentrations. Excretion study urine samples and spot urine samples from women suffering from metastatic breast cancer, being treated with anastrozole or exemestane, were collected and analyzed to develop/optimize a detection system for anastrozole and exemestane to allow the identification of athletes who do not comply with the internationally prohibited use of these cancer drugs. The assay was based on liquid-liquid extraction after enzymatic hydrolysis following liquid chromatography/tandem mass spectrometry (LC/MS/MS). Anastrozole, exemestane and its main metabolite (17-dihydroexemestane) were identified in urine by comparison of mass spectra and retention times with respective reference substances. An assay validation for the analysis of anastrozole and exemestane was performed regarding lower limits of detection (anastrozole: 0.02 ng/mL; exemestane: 3.1 ng/mL; dihydroexemestane: 0.5 ng/mL), interday precisions (6.6-11.1%, 4.9-9.1% and 5.6-8.3% for low [10 ng/mL], medium [50 ng/mL] and high [100 ng/mL] concentration) and recoveries (ranged from 85-97%).  相似文献   

7.
Gupta VK  Jain R  Lukram O  Agarwal S  Dwivedi A 《Talanta》2011,83(3):709-716
A rapid and sensitive liquid chromatography tandem mass spectrometry method has been developed and validated for the simultaneous determination of ramipril, ramiprilat and telmisartan in human plasma. The solid-phase extraction technique was used for the extraction of ramipril, ramiprilat and telmisartan from human plasma. Trandolaprilat and hydrochlorothiazide were used as the internal standards (ISs). Chromatography was performed on a Hypurity C18, 5 μm, 50 mm × 4.6 mm column, with the mobile phase consisting of ammonium acetate and acetonitrile (in a 20:80 ratio), followed by detection using mass spectrometry. The method involves a simple reversed isocratic chromatography condition and mass spectrometry detection, which enables detection at sub-nanogram levels. The method was validated and the lower limit of quantification for ramipril, ramiprilat and telmisartan was found to be 0.1 ng mL−1, 0.1 ng mL−1 and 2 ng mL−1, respectively. The mean recovery for ramipril, ramiprilat and telmisartan ranged from 90.1 to 104.1%. This method increased the sensitivity and selectivity; resulting in high-throughput analysis of ramipril, ramiprilat and telmisartan using two different ISs in a single experiment for bioequivalence studies, with a chromatographic run time of 1.5 min only.  相似文献   

8.
Oral prochlorperazine (PCZ), an antiemetic, undergoes extensive first-pass metabolism. The study developed a simultaneous analytical method for PCZ and its major metabolites, prochlorperazine sulfoxide (PCZSO), N-demethylprochlorperazine (NDPCZ) and 7-hydroxyprochlorperazine (PCZOH), in human plasma using an isocratic liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Deproteinized plasma specimens were separated using a 3 μm particle size octadecylsilyl column, and the run time was 10 min. The calibration curves were linear over the concentration ranges of 0.01-40 μg/L for PCZ, NDPCZ and PCZOH, and 0.05-80 μg/L for PCZSO. The intra- and inter-assay precisions and accuracies were within 7.0 and 99-104% and within 9.0 and 99-105%, respectively. The lower limits of quantification in human plasma were 10 ng/L for PCZ, NDPCZ and PCZOH, and 50 ng/L for PCZSO. The validated method was applied to the determination of plasma samples in 37 cancer patients receiving PCZ. Large interindividual variations were observed in plasma concentrations of PCZ, PCZSO, NDPCZ and PCZOH (relative standard deviation, 89.4, 88.7, 86.4 and 78.2%, respectively). In conclusion, this simultaneous LC-MS/MS method with acceptable analytical performance can be helpful for evaluating the pharmacokinetics of PCZ, including the determination of its metabolites in cancer patients and in clinical research.  相似文献   

9.
Long-chain acyl-coenzymes A (acyl-CoAs) (LCACoA) are the activated forms of long-chain fatty acids and serve as key lipid metabolites. Excess accumulation of intracellular LCACoA, diacylglycerols (DAGs) and ceramides may create insulin resistance with respect to glucose metabolism. We present a new method to measure LCACoA concentrations and isotopic enrichment of palmitoyl-CoA ([U-(13) C]16-CoA) and oleoyl-CoA ([U-(13) C]18:1-CoA) using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) to quantitate seven different LCACoA (C14-CoA, C16-CoA, C16:1-CoA, C18-CoA, C18:1-CoA, C18:2-CoA, C20-CoA). The molecules are separated on a reversed-phase UPLC column using a binary gradient with ammonium hydroxide (NH(4) OH) in water and NH(4) OH in acetonitrile (ACN). The LCACoA are quantified using selected reaction monitoring (SRM) on a triple quadrupole mass spectrometer in positive electrospray ionization (ESI) mode. All LCACoA ions except enriched palmitate enrichment of palmitoyl-CoA ([U(-13)C]16-CoA) and oleoyl-CoA ([U(-13)C]18:1-CoA) using ultra-performance liquid chromatography/mass spectrometry (UPLC/MS/MS) to quantitate seven different LCACoA (C14-CoA, C16-CoA, C16:1-CoA, C18-CoA, C18:1-CoA, C18:2-CoA, C20-CoA). The molecules are separated on a reversed-phase UPLC column using a binary gradient with ammonium hydroxide (NH(4) OH) in water and NH(4) OH in acetonitrile. The LCACoA are quantified using selected reaction monitoring (SRM) on a triple quadrupolemass spectrometer in positive electrospray ionization (ESI) mode. All LCACoA ions except enriched palmitate and oleate were monitored as [M+2+H](+) and [U(13)C]16-CoA and [U(13)C]18:1-CoA were monitored as [M+16+H](+) and [M+18+H](+), respectively. The method is simple, sensitive and efficient (run time as short as 5 min) and allowed us to measure the concentration and detect enrichment in intramyocellular [U(13) C]16-CoA and [U(13) C]18:1-CoA during a low dose intravenous infusion of [U(13) C]palmitate and [U(13) C]oleate in adults undergoing either a saline control experiment or an insulin/glucose infusion experiment. This technique should allow investigators to measure the trafficking of extracellular fatty acids to the intracellular LCACoA pool.  相似文献   

10.
Amphetamine-type stimulants (ATS) such as methamphetamine are widely abused and can cause toxic effects in the body. In this study, a simple and accurate analytical method for distribution measurement of drugs in organs was developed to visualize localization of ATS in organs and to complement drug distribution by mass spectrometry imaging (MSI). The brain, liver and kidney from rats to which ATS had been administered were segmented into blocks of 2×2×2 mm3 at -30°C. Each organ block was micropulverized with a stainless-steel bullet at -80°C. The concentrations of drugs in each block were measured by liquid chromatography/tandem mass spectrometry. The three-dimensional distribution of drugs in a whole organ was expressed using color gradation of drug concentration after reconstruction of all blocks to the original locations. The distribution was also compared with that obtained by MSI. This method enabled measurement of drug distribution in organs with simple and clean procedures and accurate quantification unlike autoradiography and MSI. The methamphetamine concentrations were different between parts in an organ, particularly in the kidney. This method could be applicable to the measurement of the distribution of compounds in various solid samples and could be used as a complementary method for the measurement of the distribution of compounds by MSI.  相似文献   

11.
Bisphosphonates are extremely hydrophilic and structurally similar to many endogenous phosphorylated compounds, making their selective extraction from serum or urine very challenging. Many bisphosphonates lack strong chromophores for sensitive UV or fluorescence detection. We report here the first general approach to enable sensitive and selective quantitation of N-containing bisphosphonates by liquid chromatography/tandem mass spectrometry (LC/MS/MS) following derivatization with diazomethane. The novelty of the strategy lies in performing the derivatization on silica-based anion-exchange sorbents as an integrated step in the sample purification by solid-phase extraction (SPE). The 'on-cartridge' reaction with diazomethane not only led to higher efficiency of derivatization, but also enabled a more discriminatory recovery of the drug's derivatives. The derivatized bisphosphonates demonstrated improved chromatographic separation and increased sensitivity of the detection. The general applicability of the approach was demonstrated by validation of bioanalytical methods for risedronate and alendronate in human serum and urine. Sensitivity was achieved at the pg/mL level with merely 100-200 microL of sample.  相似文献   

12.
A method was developed for the simultaneous determination of six toxic alkaloids (aconitine, hypaconitine, gelsemine, raceanisodamine, strychnine, brucine) in blood and urine by hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray tandem mass spectrometry. Ephedrine was selected as the internal standard. Samples were extracted and cleaned up by solid-phase extraction (SPE) using Oasis MCX cartridges. Separation parameters such as organic modifier, buffer pH, and concentration of buffer salt were investigated. Gradient separation and analysis were achieved for six alkaloids on a 3-μm Atlantis HILIC column using a mobile phase consisting of 30 mM ammonium formate and acetonitrile at pH 3. Two multiple reaction monitoring (MRM) transitions for each substance were monitored to provide sufficient identification of alkaloid. The retention mechanisms were explored in the method development. Validation included assessment of linearity, limit of quantification, accuracy, and precision. Bias was less than 15.1% and precision was better than 8.3% for both blood and urine samples. A total of 54 clinical samples were examined by this validated method.  相似文献   

13.
A reliable and easy to use liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the simultaneous quantification of urinary concentrations of cyclophosphamide (CP) and its main metabolites excreted in urine, i.e. N-dechloroethylcyclophosphamide (DCL-CP), 4-ketocyclophosphamide (4KetoCP), and carboxyphosphamide (CarboxyCP). Sample preparation consisted of dilution of urine with an aqueous solution of the internal standard D(4)-CP and methanol, and centrifugation. LC/MS/MS detection was performed using a triple-quadrupole mass spectrometer working in selected reaction monitoring mode. All analytes were quantified in a single run within 11.5 min. The limits of detection were 5 ng/mL for CP and 4KetoCP, 1 ng/mL for DCL-CP, and 30 ng/mL for CarboxyCP. Quantification ranges were adjusted to the expected concentrations in 24-h urine collections of patients treated with a polychemotherapy regimen (3-175 microg/mL for CP, 0.5-27 microg/mL for 4KetoCP and 0.17-9 microg/mL for CarboxyCP and DCL-CP, respectively). The method was validated according to international guidelines of the ICH and the FDA.  相似文献   

14.
Nandrolone (19‐nortestosterone) is an androgenic anabolic steroid illegally used as a growth‐promoting agent in animal breeding and as a performance enhancer in athletics. Therefore, its use was officially banned in 1974 by the Medical Commission of the International Olympic Committee (IOC). Following nandrolone administration, the main metabolites in humans are 19‐norandrosterone, 19‐norethiocolanolone and 19‐norepiandrosterone, and their presence in urine is the basis of detecting its abuse. The present work was undertaken to determine, in human urine, nandrolone metabolites (phase I and phase II) by developing and comparing multiresidue liquid chromatography/tandem mass spectrometry (LC/MS/MS) and gas chromatography/mass spectrometry (GC/MS) methods. A double extraction by solid‐phase extraction (SPE) was necessary for the complete elimination of the interfering compounds. The proposed methods were also tested on a real positive sample, and they allow us to determine the conjugated/free fractions ratio reducing the risk of false positive or misleading results and they should allow laboratories involved in doping control analysis to monitor the illegal use of steroids. The advantages of LC/MS/MS over GC/MS (which is the technique mainly used) include the elimination of the hydrolysis and derivatization steps: it is known that during enzymatic hydrolysis several steroids can be converted into related compounds and deconjugation is not always 100% effective. The validation parameters for the two methods were similar (limit of quantification (LOQ) <1 ng/mL and percentage coefficient of variance (CV%) <16.4), and both were able to confirm unambiguously all the analytes, thus confirming the validity of both techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This paper describes the application of ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) technology to separate and identify amphetamine-type substances (amphetamine, methamphetamine), common and novel designer analogues (MDA, MDMA, PMA, 4-MTA, MBDB), and ketamine using Acquity UPLC/Micromass Quattro Micro API mass spectrometer instrumentation (Waters Corporation, USA). From injection of drug reference standards, it was demonstrated that these compounds can be identified by product ion mass spectra in less than 4 min total analysis time, indicating that the technological advancements associated with UPLC/MS/MS allow it to serve as a powerful analytical tool for high-throughput testing. In addition to demonstrating the separation and response of these drug compounds under the stated UPLC/MS/MS conditions, we believe the acquired product ion spectra will be a beneficial reference to laboratories interested in incorporating the use of this technology in the routine analysis of drugs of abuse.  相似文献   

16.
The accurate and precise measurement of endogenous corticosteroids in urine is a powerful tool to understand the biochemical state in several diseases. In this study, a rapid, accurate, and sensitive method based on liquid chromatography-tandem mass spectrometry (LC–MS/MS) for the quantification of 67 endogenous gluco- and mineralo-corticosteroids and progestins has been developed and validated. Sample preparation, chromatographic separation, and mass spectrometric detection were optimized. Urine samples (0.5 mL) were hydrolyzed with β-glucuronidase and the released analytes were extracted by liquid–liquid extraction. The chromatographic separation was performed in 20 min after redisolution of the extract. MS behavior of endogenous corticosteroids was evaluated in order to select the most specific precursor ion ([M+H]+, [M+NH4]+, or [M+H-nH2O]+) for the detection. MS/MS determination was performed under selected reaction monitoring mode using electrospray ionization in positive mode. The method was shown to be linear (r > 0.99) in the range of endogenous concentrations for all studied metabolites. Limits of detection (LOD) below 1 ng mL−1 were typically obtained for analytes with a 3-oxo-4-ene structure whereas LODs below 15 ng mL−1 were common for the rest of analytes. Recoveries were higher than 80% and intra-assay precisions below 20%, evaluated at three concentration levels, were found for most steroids. No significant or moderate matrix effect, ranging from 54 to 155%, was observed for most of the analytes. The applicability of the method was confirmed by analyzing 24 h urine samples collected from twenty healthy volunteers and comparing the results with previously established normal ranges. The wide coverage of corticosteroid metabolism, together with short analysis time, low sample volume, simple sample preparation, and satisfactory quantitative results make this method useful for clinical purposes.  相似文献   

17.
18.
Tripamide is a drug widely used in clinical practice for the treatment of hypertension and edema. This work evaluated a screening method for Tripamide and its urinary metabolites in human urine, using high-performance liquid chromatography diode-array detection (HPLC/DAD). Identification of these metabolites was investigated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) after dosing with 15 mg Tripamide. Acid hydrolysis showed that Tripamide is conjugated in the body. Two suspected metabolites were detected by HPLC/DAD. HPLC/ESI-MS/MS analysis suggested that these metabolites were probably hydroxylated together with loss of the -NH(2) group and dehydrogenation. These results will be useful in confirmation methods for Tripamide in doping control.  相似文献   

19.
An HPLC/MS/MS method for the determination of arbidol in human plasma was developed. Arbidol and internal standard (loratadine) were extracted from alkaline plasma with tert-butyl methyl ether and analyzed on a Zorbax SB C18 column (30 x 2.1 mm id, 3.5 microm particle size). The detection was by monitoring arbidol at m/z 479.1 --> 434.1 and the internal standard at m/z 383.2 --> 337.2. The method was validated according to U.S. Food and Drug Administration guidelines. The calibration curve was linear over the range of 0.5-500 ng/mL using a 100 microL sample volume. The intraday and interday precisions were less than 6.5%, and acceptable values were obtained for accuracy, recovery, and sensitivity. The developed method was selective, simple, sensitive, and easily applicable.  相似文献   

20.
The potential of liquid chromatography combined with tandem mass spectrometry (LC/MS/MS) for the determination of pesticide metabolites in human urine at the sub-ppb level is explored. Metabolites from two organophosphorous pesticides, 4-nitrophenol (from parathion and parathion-methyl) and 3-methyl-4-nitrophenol (from fenitrothion), are taken as model analytes to conduct this study. After direct injection of the urine sample (10 microL), different approaches were evaluated in order to achieve correct quantitation of analytes using an electrospray ionisation (ESI) interface. Thus, the feasibility of using external calibration was checked versus the use of different isotope-labeled internal standards. The advantages of applying coupled-column liquid chromatography (LC/LC) as an efficient clean-up without any type of sample manipulation are also discussed. The combination of LC/LC with ESI-MS/MS allows the direct analysis of free metabolites in urine, as the automated clean-up performed by the coupled-column technique is sufficient for the removal of interferences that suppress the ionisation of analytes in the ESI source. Using this procedure with external calibration, good precision and recoveries, and detection limits below 1 ng/mL are reached with analysis run times of around 8 min. The hyphenated technique LC/LC/ESI-MS/MS is proved to be a powerful analytical tool, allowing the rapid, sensitive and selective determination of 4-nitrophenol and 3-methyl-4-nitrophenol in human urine without any sample treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号