首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a high photocatalytic activity was attained by intercalating a Pt layer between SnO2 and TiO2 semiconductors, which yielded a TiO2/Pt/SnO2 - type heterostructure used in the discoloration of blue methylene (MB) solution. The porous films and platinum layer were obtained by electrophoretic deposition and DC Sputtering, respectively, and were both characterized morphologically and structurally by FE-SEM and XRD. The films with the Pt interlayer were evaluated by photocatalytic activity through exposure to UV light. An increase in efficiency of 22% was obtained for these films compared to those without platinum deposition. Studies on the reutilization of the films pointed out high efficiency and recovery of the photocatalyst, rendering the methodology favorable for the construction of fixed bed photocatalytic reactors. A proposal associated with the mechanism is discussed in this work in terms of the difference in Schottky barrier between the semiconductors and the electrons transfer and trapping cycle. These are fundamental factors for boosting photocatalytic efficiency.  相似文献   

2.
Titanium dioxide (TiO2) is recognized as the most efficient photocatalytic material, but due to its large band gap energy it can only be excited by UV irradiation. Doping TiO2 with nitrogen is a promising modification method for the utilization of visible light in photocatalysis. In this work, nitrogen-doped TiO2 films were grown by atomic layer deposition (ALD) using TiCl4, NH3 and water as precursors. All growth experiments were done at 500 °C. The films were characterized by XRD, XPS, SEM and UV–vis spectrometry. The influence of nitrogen doping on the photocatalytic activity of the films in the UV and visible light was evaluated by the degradation of a thin layer of stearic acid and by linear sweep voltammetry. Light-induced superhydrophilicity of the films was also studied. It was found that the films could be excited by visible light, but they also suffered from increased recombination.  相似文献   

3.
Titania thin films were synthesized by sol–gel dip-coating method with metallic Ni nanoparticles synthesized separately from an organometallic precursor Ni(COD)2 (COD = cycloocta-1,5-diene) in presence of 1,3-diaminopropane as a stabilizer. Titania was obtained from a titanium isopropoxide precursor solution in presence of acetic acid. A Ni/TiO2 sol system was used to coat glass substrate spheres (6, 4 and 3 mm diameter sizes), and further heat treatment at 400 °C was carried out to promote the crystallization of titania. XRD analysis of the TiO2 films revealed the crystallization of the anatase phase. Transmission Electron Microscopy (TEM) and High Resolution TEM studies of Ni nanoparticles before mixing with the TiO2 solution revealed the formation of Ni nanostructures with an average size of 5–10 nm. High-angle annular dark-field images of the Ni/TiO2 system revealed well-dispersed Ni nanoparticles supported on TiO2 and confirmed by AFM analysis. The photocatalytic activity of the Ni/TiO2 films was evaluated in hydrogen evolution from the decomposition of ethanol using a mercury lamp for UV light irradiation. Titania films in presence of Ni nanoparticles show higher efficiency in their photocatalytic properties in comparison with TiO2.  相似文献   

4.
The thin films of TiO2 doped by Sn or Nb were prepared by sol–gel method under process control. The effects of Sn and Nb doping on the structural, optical and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD) high resolution transmission electron microscopy and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy. XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The activity of the photocatalyst was evaluated by photocatalytic degradation kinetics of aqueous methylene blue under UV and Visible radiation. The results show that the photocatalytic activity of the Sn-doped TiO2 thin film have a larger degradation efficiency than Nb-doped TiO2 under visible light, but under UV light photocatalytic activity of the Nb-doped TiO2 thin film is better.  相似文献   

5.
TiO2 thin film photocatalysts which could induce photoreactions under visible light irradiation were successfully developed in a single process by applying an ion engineering technique, i.e., the radio frequency (RF) magnetron sputtering deposition method. The TiO2 thin films prepared at temperatures greater than 773 K showed the efficient absorption of visible light; on the other hand, the TiO2 thin films prepared at around 573 K were highly transparent. This clearly means that the optical properties of TiO2 thin films, which absorb not only UV but also visible light, can be controlled by the preparation temperatures of the RF magnetron sputtering deposition method. These visible light responsive TiO2 thin films were found to exhibit effective photocatalytic reactivity under visible light irradiation (λ > 450 nm) at 275 K for the reductive decomposition of NO into N2 and N2O. From various characterizations, the orderly aligned columnar TiO2 crystals could be observed only for the visible light responsive TiO2 thin films. This unique structural factor is expected to modify the electronic properties of a TiO2 semiconductor, enabling the efficient absorption of visible light.  相似文献   

6.
In this study, the photocatalytic efficiency of anatase‐type TiO2 nanoparticles synthesized using the sol–gel low‐temperature method, were enhanced by a combined process of copper reduction and surface hydroxyl groups enhancement. UV–light‐assisted photo and NaBH4‐assisted chemical reduction methods were used for deposition of copper onto TiO2. The surface hydroxyl groups of TiO2 were enhanced with the assistance of NaOH modification. The prepared catalysts were immobilized on glass plates and used as the fixed‐bed systems for the removal of phenazopyridine as a model drug contaminant under visible light irradiation. NaOH‐modified Cu/TiO2 nanoparticles demonstrated higher photocatalytic efficiency than that of pure TiO2 due to the extending of the charge carriers lifetime and enhancement of the adsorption capacity of TiO2 toward phenazopyridine. The relationship of structure and performance of prepared nanoparticles has been established by using various techniques, such as XRD, XPS, TEM, EDX, XRF, TGA, DRS and PL. The effects of preparation variables, including copper content, reducing agents rate (NaBH4 concentration and UV light intensity) and NaOH concentration were investigated on the photocatalytic efficiency of NaOH‐modified Cu/TiO2 nanoparticles.  相似文献   

7.
Ag/TiO2 photocatalytic films were produced by hybrid sol-gel method. The photocatalytic degradation of methyl orange (MO) in aqueous solution under 365 nm irradiation on TiO2 and Ag/TiO2 thin films was investigated. The state and amount of Ag species within the film and the enhancement mechanism of photocatalytic activity of Ag/TiO2 were discussed. With a loading molar ratio of Ag/Ti = 0.135 in TiO2 film, the maximum catalytic efficiency was observed. __________ Translated from Journal of Beijing Normal University (Natural Sciences), 2005, 41(6) (in Chinese)  相似文献   

8.
In this work the efficiency and physicochemical details of a thin film produced by help of a microwave assisted sol gel technique is compared to different commercial powders (Degussa P25 and Hombikat UV100) deposited on glass substrates. Furthermore, a supercritical produced TiO2 powder (SC 134) was included in the comparison.The prepared TiO2 films were characterized using XRD, XPS, AFM, DSC and DLS. The photocatalytic activity was determined using stearic acid as a model compound. Investigation of the prepared films showed that the Degussa P25 film and the sol–gel film were the most photocatalytic active films. The activity of the films was found to be related to the crystallinity of the TiO2 film and the amount of surface area and surface hydroxyl groups. Based on the XPS investigation of the films before and after UV irradiation it was suggested that the photocatalytic destruction of organic matter on TiO2 films proceeds partly through formation of hydroxyl radicals which are formed from surface hydroxyl groups created by interactions between adsorbed water and vacancies on the TiO2 surface. Furthermore a correlation between the amount of OH groups on the surface of the different TiO2 films and the photocatalytic activity was found.  相似文献   

9.
锐钛矿型多孔TiO2薄膜的溶解法制备及性能表征   总被引:2,自引:0,他引:2  
在具有锐钛矿晶粒的TiO2溶胶中加入苯丙乳液粒子,使用该混合液浸渍提拉涂膜,然后利用甲苯将薄膜中的苯丙乳液粒子溶解去除,并通过重复涂膜,在室温下获得了具有良好多孔性的锐钛矿型TiO2薄膜。考察了多孔薄膜的表面形貌、光学性能、吸附性能和光催化性能。结果表明:随薄膜涂膜次数的增加,TiO2多孔薄膜的吸光度增大,透光率减小,光吸收边波长向长波方向移动。罗丹明B在TiO2多孔薄膜上的吸附量随涂膜次数的增加先升高,后降低;多次涂膜会在薄膜中产生半封闭的孔洞,经过长时间的毛细渗透等作用能进一步增加薄膜对罗丹明B的吸附。TiO2多孔薄膜通过吸附+光催化氧化的模式快速分解罗丹明B,其活性主要受到薄膜在光催化反应初期的吸附能力的影响。此外,TiO2的负载量、光的利用效率、以及光生电荷迁移及其分离等也是影响薄膜光催化活性的因素。  相似文献   

10.
A set of anatase titanium dioxide (TiO2) films coated on foam nickel that modified by Al2O3 films as transition layer (indicated as TiO2/Al2O3 films) were synthesized via sol-gel route. The bulk and surface properties of the TiO2/Al2O3 films were characterized by thermal gravimetric and differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and BET. The photocatalytic activities of TiO2/Al2O3 films were investigated based on the degradation of gaseous acetaldehyde under ultraviolet (UV) irradiation. The foam nickel is a promising substrate material in practical applications because of its excellent hydrodynamic properties for gas passing. The TiO2/Al2O3 composite films showed much higher photocatalytic activity and stability for degradation of gaseous acetaldehyde than the onefold TiO2 films. The significant enhancement in photocatalytic activity and stability can be ascribed to the coating of Al2O3 transition layer, which concentrates the target substances around TiO2 particles and increases the specific surface area (SSA) of the substrate (the SSAs of bare foam nickel and Al2O3 modified foam nickel are 0.12 and 113.7 m2/g, respectively) to provide more sites for TiO2 loading.  相似文献   

11.
The effects of HF treatment on the activity of TiO2 thin films for the photocatalytic water splitting reaction have been investigated. TiO2 thin films treated with HF solution (HF-TiO2) were found to exhibit a remarkable enhancement of the photocatalytic activity for H2 evolution from a methanol aqueous solution, as well as efficient photoelectrochemical performance under UV light irradiation as compared with the untreated TiO2. Moreover, Pt-loaded HF-TiO2 thin films were found to act as efficient and stable photocatalysts for the decomposition of water under UV light irradiation. The mechanistic insights obtained in the present study will be useful in the design of highly efficient photocatalysts for the decomposition of water.  相似文献   

12.
Photocatalytic multilayer nanocomposite films composed of anatase TiO2 nanoparticles and lignosulfonates (LS) were fabricated on quartz slides by the layer‐by‐layer (LBL) self‐assembly technique. X‐ray photoelectron spectroscopy (XPS), UV‐vis spectroscopy and atomic force microscopy (AFM) were used to characterize the TiO2/LS multilayer nanocomposite films. Moreover, the photocatalytic properties (decomposition of methyl orange and bacteria) of multilayer nanocomposite films were investigated. XPS results indicated that the intensities of titanium and sulfur peaks increased with the LBL deposition process. A linear increase in absorbance at 280 nm was found by UV‐Vis spectroscopy, suggesting that stepwise multilayer growth occurs on the substrate and this deposition process is highly reproducible. AFM images showed that quartz slide was completely covered by TiO2 nanoparticles when a 10‐bilayer multilayer film was formed. The decomposition efficiency of methyl orange by TiO2/LS multilayer films under the same UV irradiation time increased linearly with the number of TiO2 layers, and the results of decomposition of bacteria under UV irradiation showed that TiO2/LS multilayer nanocomposite films exhibited excellent decomposition activity of bacteria (Escherichia coil).  相似文献   

13.
This research work presents the efficiency of the TiO2 and Ag–TiO2 thin films prepared by the sol–gel method and coated onto the surface of 304 stainless steel sheets used in the photocatalytic nitrate reduction processes. The Ag–TiO2 thin films had the weight by weight (w/w) ratio of Ag+/TiO2 of 0.1% as Ag atom. The XRD results showed that the crystalline phase structure of TiO2 on the Ag–TiO2 thin films was anatase. The optical band gaps of the TiO2 and 0.1% Ag–TiO2 thin films were respectively 3.27 and 2.70 eV, while the surface of the prepared catalysts was hydrophobic with the respective average water contact angles of 94.8° and 118.5° for the TiO2 and 0.1% Ag–TiO2 thin films. The net efficiencies of photocatalytic nitrate reduction of TiO2 and 0.1% Ag–TiO2 were 41.4% and 70.0%, respectively. The loading of Ag only influenced the nitrate removal efficiency without affecting the stoichiometric ratio of formate to nitrate. The net stoichiometric ratio of formate to nitrate of all experiments was 2.8:1.0, which is close to the stoichiometric ratio of 2.5:1.0 of the nitrate reduction to nitrite and then to nitrogen gas.  相似文献   

14.
TiO2 nanowire-nanoparticle hetero-structured films were prepared via a sol–gel method and coated on glass substrates by dipping method for photocatalytic activity. In this study 0, 1, 3, and 5 mol% of Ni doped were studied. One-dimensional TiO2 nanowires (NWs) were prepared by hydrothermal treatment with TiO2 nanoparticles (NPs) which are commercially available. XRD, FESEM, DRS, and XPS were used to characterize the prepared nanowire-nanoparticle hetero-structures films. 3%Ni doped TiO2 hetero-structured film (TNi3) had the highest photocatalytic activity on the degradation of methylene blue (MB). TNi3 films provided about 4.3 times of degradation rate compared to undoped TiO2 (T). It revealed that TNi3 film resulted in shifting the absorption wavelength towards narrowing the energy band gap and small crystallite size. Therefore, the TNi3 film exhibited a photocatalytic activity on the degradation of MB under visible light irradiation greater than undoped film.  相似文献   

15.
A sol?Cgel method was applied for fabrication of nanocrystalline anatase TiO2 thin films on ITO glass substrates and followed by rapid thermal annealing for application as the work electrode for dye-sensitized solar cells (DSSC). TiO2 nanoparticles were characterized by X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM) and the absorption of dye on the TiO2 electrode was shown by UV?Cvis spectroscopy. By controlling different parameters including numbers of coated layers, the gap between two electrodes, sensitization time, and light source power, TiO2-based solar cells with high efficiency was achieved. The results show that a five time spin-coated TiO2 electrode with applying sealant and sensitization time of 24?h in N3 dye under illumination of 100?W?cm?2 tungsten lamp give the optimum power conversion efficiency (??) of 6.61%. The increases in thickness of TiO2 films by increasing the numbers of coated layers can improve adsorption of the N3 dye through TiO2 layers to increase the open-circuit voltage (V oc). However, short-circuit photocurrents (J sc) of DSSCs with a one-coated layer of TiO2 films are smaller than those of DSSCs with five-coated layer of TiO2 films. It could be due to the fact that the increased thickness of TiO2 thin films also resulted in a decrease in the transmittance of TiO2 thin films. Also, this electrode was employed to photoreduce CO2 with H2O under tungsten lamp as light source.  相似文献   

16.
Photocatalysis with anatase Titanium dioxide (TiO2) under ultraviolet A (UVA) has a well recognized bactericidal effect. There have been a few reports, however, on the effects of photocatalysis on bio‐implant‐related infections. The purpose of present study was to evaluate the photocatalytic bactericidal effects of anatase TiO2 on Staphylococcus aureus (S. aureus) associated with surgical site infections. TiO2 films were synthesized on commercially pure titanium substrates and SUS316 stainless steel using a plasma source ion implantation method followed by annealing. The chemical composition of the surface layers was determined using GXRD and XPS. The disks were seeded with cultured S. aureus and exposed to UVA illumination from black light. The bactericidal effect of the TiO2 films was evaluated by counting the survived colonies statistically. A structural gradient anatase type TiO2 layer formed on all substrates. The viability of the bacteria on the photocatalytic TiO2 film coated on titanium was suppressed to 7.0% at 30 minutes and 5.5% at 45 minutes, whereas that on a similarly coated stainless steel was suppressed to 45.8% at 30 minute and 28.6% at 45 minutes (ANOVA: p < 0.05). Complete bacterial inactivation was achieved after 90 minutes on titanium and after 60 minutes on stainless steel. The photocatalytic bactericidal effect of TiO2 is useful for sterilizing the contaminated surfaces of bioimplants. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A series of carbon-coated, nitrogen-doped titanium dioxide photocatalysts was produced and characterized. N-doped TiO2 powder samples were prepared using a sol-gel method and subsequently used for making doped-TiO2 thin films on glass substrates. Carbon layers were coated on the films by a thermal decomposition method using catechol. Diffuse reflectance spectra and Mott-Schottky analyses of the samples proved that nitrogen doping and carbon coating can slightly lower the band gap of TiO2, broaden its absorption to visible light and enhance its n-type character. According to photocatalytic tests against model contaminants, carbon-coated nitrogen-doped TiO2 films have better performance than simple TiO2 on the degradation of Rhodamine B dye molecules, but are poorly effective for degrading 4-chlorophenol molecules. Several possible explanations are proposed for this result, supported by scavenging experiments. This reveals the importance of a broad substrate scope when assessing new photocatalytic materials for water treatment, something which is often overlooked in many literature studies.  相似文献   

18.
Many types of supported photocatalytic TiO2 continue to be the subject of extensive development worldwide. Besides industrial production and practical use of the new photocatalytic materials, there is an increasing need for a simple and reliable procedure for characterization of photocatalytic activities of newly developed materials. The aim of our work was to develop a method for the determination of quantum yields of supported photocatalysts by employing an aqueous solution of a model organic compound and different thin TiO2 films. Additionally, also a newly defined parameter, the so-called mass efficiency, was introduced as an advantageous way of defining the photocatalytic activities. Coumarin (CM) was found to be an appropriate candidate for being a probe molecule when the photocatalytic degradation mainly occurs via the HO radical-mediated mechanism. An advantage of using CM is easy determination of highly fluorescent 7-hydroxycoumarin (7OHC). Different TiO2 films were deposited via sol–gel methods on soda-lime glass slides that were precovered with a thin SiO2 film, and via the sedimentation process from aqueous suspensions. Aqueous solutions of CM were irradiated using 365 nm radiation in the presence of titania films. Although Degussa P25 films showed approximately four times higher degradation rates compared to the sol–gel processed, its quantum yield was not more than 2.5 times higher. This could be explained by higher absorbance of Degussa P25 films per amount of the catalyst compared to sol–gel films. Since no information on the absorption characteristics of the material per unit of mass of the catalyst is included within the calculation of quantum yield, mass efficiency is suggested for the evaluation of photocatalytic properties of the coatings. It is evident from the present study that it is obligatory to evaluate the photocatalytic efficiencies of different area densities of the same photocatalyst in order to properly characterize the material's efficiency.  相似文献   

19.
NiS/TiO2 nano-sheet films (NiS/TiO2 NSFs) photocatalysts were prepared by loading NiS nanoparticles as noble metal-free cocatalysts on the surface of TiO2 films through a solvothermal method. The prepared samples were characterized by XRD, SEM, EDS, UV–Vis absorption spectra and XPS analysis. The photocatalytic H2 evolution and photoluminescence spectroscopy (PL) experiments indicated that the NiS cocatalysts could efficiently promote the separation of photogenerated charge carriers in TiO2 and consequently enhance the H2 evolution activity. The hydrogen yield obtained from the optimal sample reached 4.31 μmol cm–2 at 3.0 h and the corresponding energy efficiency was about 0.26%, which was 21 times higher than that of pure TiO2 NSF. A possible photocatalytic mechanism of NiS cocatalyst on the improvement of the photocatalytic performance of TiO2 NSF was also proposed.  相似文献   

20.
Atomic‐layer deposition (ALD) is a thin‐film growth technology that allows for conformal growth of thin films with atomic‐level control over their thickness. Although ALD is successful in the semiconductor manufacturing industry, its feasibility for nanoparticle coating has been less explored. Herein, the ALD coating of TiO2 layers on ZnO nanoparticles by employing a specialized rotary reactor is demonstrated. The photocatalytic activity and photostability of ZnO nanoparticles coated with TiO2 layers by ALD and chemical methods were examined by the photodegradation of Rhodamine B dye under UV irradiation. Even though the photocatalytic activity of the presynthesized ZnO nanoparticles is higher than that of commercial P25 TiO2 nanoparticles, their activity tends to decline due to severe photocorrosion. The chemically synthesized TiO2 coating layer on ZnO resulted in severely declined photoactivity despite the improved photostability. However, ultrathin and conformal ALD TiO2 coatings (≈0.75–1.5 nm) on ZnO improved its photostability without degradation of photocatalytic activity. Surprisingly, the photostability is comparable to that of pure TiO2, and the photocatalytic activity to that of pure ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号