首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prepared Zn–Al layered double hydroxide (LDH) thin films intercalated with sulfonated 1,3′,3′-trimethyl-6-nitrospiro[2H-chromene-2,2′-indoline] anions (SP-SO3 ?) by immersion of sol–gel derived amorphous Al2O3–ZnO thin films in hot water containing SP-SO3H. Extended interlayer spacing, in comparison to the Zn–Al LDH with carbonate anions, was observed after immersion in distilled water containing SP-SO3H at 60 °C for 30 min, indicating that we formed Zn–Al LDH films with SP-SO3 ? directly on glass substrates. The merocyanine form of SP-SO3 ? was shown by UV spectra to have stabilized in the hydroxide layers of LDH.  相似文献   

2.
Journal of Radioanalytical and Nuclear Chemistry - Nano-silica (Si-AL800) was extracted from the thermally treated rice husk ash by acid leaching route. Coating surface of the extracted silica with...  相似文献   

3.
Nanoscale layered double hydroxides of FeII and AlIII (Fe–Al LDH) have been applied for removal of chromate (CrVI) from aqueous solution. Given the reaction stoichiometry, CrVI was completely reduced to CrIII and coprecipitated with FeIII and AlIII oxyhydroxides. The extent of CrVI removal decreased with increasing initial pH and decreasing molar ratio of CrVI/structural FeII in the LDH. The chromate reduction rate at different initial concentrations of CrVI was well described by the pseudo-second-order model with reaction rate constant ranging from 197.4 to 13.53 (mmol min)?1. Initial pH and substitution of various amounts of FeIII in the LDH structure had little effect on the reaction rate. Backtransformation of CrIII to CrVI by birnessite Mn oxide (δ-MnO2) after 40 days of reaction was less than 1% of the initial Cr (as CrIII solid), indicating high stability of the final reaction products and high efficiency of nanoscale Fe–Al LDHs for removal of chromate from aqueous solution.  相似文献   

4.
5.
6.
This study examined the effect of the interlayer spacing of a Mg–Al layered double hydroxide (Mg–Al LDH) on the ability of the Mg–Al LDH to take up a nonionic organic material. Mg–Al LDHs, intercalated with 1-propanesulfonate (PS?), 1-hexanesulfonate (HS?), and 1-dodecanesulfonate (DS?), were prepared by coprecipitation, yielding PS·Mg–Al LDH, HS·Mg–Al LDH, and DS·Mg–Al LDH, respectively. The increase in the alkyl chain lengths of the Mg–Al LDHs (PS? < HS? < DS?) resulted in the perpendicular orientation of the organic acid anions in the interlayer of Mg–Al LDH, which in turn resulted in more organic acid anions being accommodated in the interlayer space. An organic acid anion with a large molecular length was more easily intercalated in the interlayer of Mg–Al LDH than one with a small molecular length. This was attributed to the hydrophobic interaction between the alkyl chains, affecting the intercalation of the organic acid anions. The uptake of N,N-dimethylaniline (DMA) by Mg–Al LDHs increased in the order PS·Mg–Al LDH < HS·Mg–Al LDH < DS·Mg–Al LDH. The uptake was attributed to the hydrophobic interactions between DMA and the intercalated PS?, HS?, and DS?. Thus, Mg–Al LDH, which has a lot of large interlayer spacings when intercalated with organic acid anions, can take up a large number of DMA molecules from an aqueous solution.  相似文献   

7.
Mg–Al layered double hydroxides (Mg–Al LDHs) intercalated with 1,3,6-naphthalenetrisulfonate (NTS3?) and 3-amino-2,7-naphthalenedisulfonate (ANDS2?) ions were prepared by coprecipitation and were characterized by X-ray diffraction and chemical analyses. Based on X-ray diffraction patterns, the naphthalene rings of NTS3? and ANDS2? were most likely oriented parallel to the brucite-like host layers of the Mg–Al LDH, midway between layers. The prepared Mg–Al LDHs were able to selectively take up aromatics from aqueous solutions, and the order of percentage uptake was as follows: 1,3-dinitrobenzene > nitrobenzene > benzaldehyde > N,N-dimethylaniline > anisole > 1,2-dimethoxybenzene. The differences in the extent of π–π stacking interactions occurring between the benzene rings of the aromatics and the naphthalene ring of the intercalated NTS3? and ANDS2? probably resulted in these differences among the absorbed quantities of the various aromatics.  相似文献   

8.
Magnesium–aluminum layered double hydroxide (Mg–Al LDH) intercalated with 1-naphthol-3,8-disulfonate (1-N-3,8-DS2−) was prepared by coprecipitation. Thermodynamically, the prepared Mg–Al LDH showed greater preferential uptake of 1,3-dinitrobenzene (DNB) than of 1,2-dimethoxybenzene (DMB). This preferential uptake of aromatic compounds, which is adequately expressed by the Dubinin–Radushkevich adsorption isotherm, was attributed to the π–π stacking interactions between the benzene ring of the aromatic compounds and the naphthalene core of 1-N-3,8-DS2− intercalated in the interlayer spaces of Mg–Al LDH. Negative values of ΔG for DNB and DMB indicate that the adsorption process is spontaneous at all temperatures. The value of ΔS for DNB was much lower than that for DMB. This implies that DNB was far more strongly adsorbed to 1-N-3,8-DS2− than was DMB, resulting in a lower degree of freedom for and higher uptake of DNB than those in the case DMB. The absolute values of |ΔH| for DNB and DMB were less than 20 kJ mol−1, indicating that the uptake of DNB or DMB by 1-N-3,8-DS·Mg–Al LDH can be considered a physical adsorption process caused by π–π stacking interactions.  相似文献   

9.
《印度化学会志》2021,98(11):100185
Sulfate-contaminated water is a major environmental problem that alters the taste of water, disturbs the digestive systems of animals and humans, and erodes both soil and metals. In this study, the layered double hydroxide LDH 4Mg2Al·NO3 and LDH 8Mg2Al·NO3 were prepared using a co-precipitation technique, and applied in the adsorption of SO42- from an aqueous solution. The reaction is well described by the Langmuir adsorption model. LDH 4Mg2Al·NO3 and LDH 8Mg2Al·NO3 afforded maximum SO42- adsorption values of 135.14 and 92.59 ​mg/g, respectively. The reaction is best explained by a pseudo-second-order mechanism, which suggests that chemisorption is the rate-determining step. The activation energies of LDH 4Mg2Al·NO3 and LDH 8Mg2Al·NO3 indicate that the adsorption of SO42- on synthetic LDHs predominantly follows an anion-exchange mechanism, wherein SO42- ions in the aqueous medium replaces intercalated NO3- ions in the synthetic LDHs. The thermodynamic parameters (Δ, Δ, and Δ) were also calculated. The reaction was endothermic, and the synthetic LDHs afforded feasible and spontaneous adsorption of SO42-.  相似文献   

10.
In this work, the isomeric ratio of 152m1Eu(8?)–152m2Eu(0?) produced from the 153Eu(γ, n)152Eu reaction have been measured in the whole giant dipole resonance region by the activation method. In order to improve the accuracy of the experimental results, the necessary corrections were made in the gamma activity measurements and data analysis. The results were discussed and compared with the similar data from literature to examine the excitation energy, the spin difference and the nuclear reaction channel effects and can be used for the interpretation on the structure of the nucleus and the mechanisms of nuclear reactions. The data for bremsstrahlung end-point energies of 19–23 MeV are first-time measurements.  相似文献   

11.
The enthalpies of complexation of glycine (HGly±) with Nd3+ and La3+ ions at 298.15 K and at an ionic strength of 0.5 (KNO3) are determined by means of calorimetry. The thermodynamic characteristics of the reactions of formation are calculated for NdGly2+, NdGly 2 + , LaGly2+, and LaGly 2 + complexes.  相似文献   

12.
A composite adsorbent based on zirconium dioxide hydrosol and functionalized carbon nanotubes for removing soluble boron compounds from aqueous solutions was synthesized by the sol–gel method. Measurements of the borate adsorption on the synthesized adsorbent samples showed that introduction of carbon nanotubes into ZrO2 sols used for preparing the adsorbents enhanced the adsorption ability of the adsorbents.  相似文献   

13.
The complex formation reactions between Mg2+, Ca2+, Sr2+ and Ba2+ metal cations with macrocyclic ligand, 4′-nitrobenzo-15C5, were studied in acetonitrile (AN)-methanol (MeOH) binary mixtures at different temperatures using conductometric method. The results show that 4′-nitrobenzo-15C5 forms 1:1 [ML] complexes with Mg2+, Ca2+ and Sr2+ metal cations in solutions. But in the case of Ba2+ cation a 1:2 [ML2] complex is formed in these solvent systems. The stability of the complexes is sensitive to the solvent composition and a non-linear behavior was observed for variation of logK f of the complexes versus the composition of the binary mixed solvents. The stability constants of complexes decrease suddenly with increasing the concentration of methanol in this binary system. The values of thermodynamic parameters (ΔH c° and ΔS c°) for formation of (4′-nitrobenzo-15C5.Mg)2+, (4′-nitrobenzo-15C5.Ca)2+ and (4′-nitrobenzo-15C5.Sr)2+ complexes were obtained from temperature dependence of the stability constants and the results show that these parameters are affected by the nature and composition of the mixed solvents. A non-linear behavior is observed between the ΔS c° and the composition of the mixed solvents.  相似文献   

14.
Research on Chemical Intermediates - The present work reports the synthesis of a Pt-modified NiO–Al2O3 nanocomposite derived from graphene-supported layered double hydroxide (Pt–NiO/G)...  相似文献   

15.
Near-infrared (NIR) quantum cutting phosphors serve as a potential material for fabricating photovoltaic spectral convertors. In many cases, quantum cutting phosphors are obtained via a wet chemical method coupled with a post-annealing treatment—a very costly process. In this report, we used continuous flame spray pyrolysis (FSP) for fabricating Y2O3:Tb3+–Yb3+ quantum-cutting phosphors without any post-treatment. Based on characterizations by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we found that as-synthesized Y2O3:Tb3+–Yb3+ phosphors exhibit hollow and shell-like micro-structures composed of highly crystalline and pure cubic-phase nanoparticles (< 50 nm). Photoluminescence studies of the phosphors revealed that NIR emissions appeared with the introduction of Yb to Y2O3:Tb3+. Phosphor size was successfully controlled by managing the concentration of the metal precursor solution for FSP. The Y2O3:Tb3+–Yb3+ phosphors were then embedded into transparent poly-ethylene-co-vinyl acetate (EVA) film to form a spectral convertor. The composite films of Y2O3:Tb3+–Yb3+ phosphors and poly-EVA were found to be highly transparent in the visible range (> 500 nm), making them suitable as spectral photovoltaic convertors.  相似文献   

16.
17.
The complexation reactions of 4′-nitrobenzo-15-crown-5 (4′NB15C5) with Zn2+, Mn2+, Cr3+ and Sn4+ cations were studied in acetonitrile–ethanol (AN–EtOH) binary solvent mixtures at different temperatures by the electrical conductometry method. The stability constants of the resulting 1:1 complexes were determined from computer fitting of the conductance versus mole ratio data. The results show that the selectivity order of 4′NB15C5 for the metal cations in the AN–EtOH (mol-%AN=76) binary solvent at 298.15 K is: Cr3+>Mn2+≈Zn2+>Sn4+, but the selectivity order changes with the composition of the mixed solvents. A nonlinear relationship was observed between the stability constants (log 10 K f) of these complexes and the composition of the AN–EtOH binary solvents. The corresponding thermodynamic parameters (DHco, DSco)(\Delta H_{\mathrm{c}}^{\mathrm{o}}, \Delta S_{\mathrm{c}}^{\mathrm{o}}) were obtained from the temperature dependence of the stability constants using van’t Hoff plots. The results show that the values and also the sign of these parameters are influenced by the nature and composition of the mixed solvents.  相似文献   

18.
Pr3+ doped or Tb3+–Mg codoped CaSnO3 phosphor powder with perovskite structure was synthesized by the polymerized complex method. Powder samples crystallized into the perovskite phase at approximately 600 °C, which is 400 °C lower than the crystallization temperature for the solid-state reaction method. Uniform-sized powders with average particle sizes of 1–2 μm were obtained after heat treatment at 1,400 °C. Although the samples heat-treated at 600 °C did not exhibit photoluminescence, white photoluminescence of Pr3+ doped CaSnO3 or green photoluminescence of Tb3+–Mg codoped CaSnO3 was observed from the sample heat-treated above 800 °C. The intensity of the photoluminescence increased with increase of the heat-treatment temperature and reached a maximum for heat treatment at 1,400 °C. The maximum photoluminescence intensity for the samples prepared by the polymerized complex method was larger than those prepared by solid-state reaction method, which is probably due to the homogeneous mixing of the doped rare earth ions.  相似文献   

19.
The optimal structures and the vibrational frequencies of H-bonded complexes formed from one-two CBr3COOH molecules or the CBr3CO 2 anion with water molecules are calculated by density functional theory (B3LYP/6-31++G(d,p)). The comparison of the obtained results with the known Raman spectra of the CBr3COOH–H2O and NaCBr3CO 2 ·H2O solutions (with component molar ratios of ≤1:16) shows that they include stable hydrates: CBr3COOH·H2O and CBr3CO 2 ·(H2O)6. The first one has a cyclic form, and the second has a cubic globular form. The vibrational band frequencies of the CBr3COOH molecule and the CBr3CO 2 anion in the spectra of both solutions are almost completely determined by the mutual arrangement of units in these hydrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号