首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photodynamic therapy (PDT) has received increased attention as a treatment modality for malignant tumors as well as non-oncologic diseases such as age-related macular degeneration (AMD). An alternative to excite the photosensitizer by the common one-photon absorption is the method of two-photon excitation (TPE). This two-photon photodynamic therapy has the potential of improving the therapeutic outcome due to a highly localized photodynamic effect. The present study investigated the two-photon excited PDT performing in vitro experiments where C6 rat glioma cells were irradiated with a pulsed and focused fs Ti:sapphire laser emitting light at 800 nm. The irradiance distribution of the laser beam was carefully analyzed before the experiment and the applied irradiance was known for each position within the irradiated cell layer. Cells were divided into four groups and one group was incubated with 5-ALA and irradiated 4-5h later. The survival of this group was tested after irradiation by means of ethidium bromide and acridine orange staining and compared to a control group, which was irradiated under the same conditions, but not incubated with 5-ALA before. Both groups showed necrotic areas depending on the applied irradiance, the value of which at the margin of the necrotic area could be deduced from its size. 5-ALA incubated cells became necrotic after irradiation with a mean irradiance above 6.1 x 10(10) W/cm(2), while non-incubated cells remained viable. Cells of both groups became necrotic when treated with an irradiance above 10.9 x 10(10) W/cm(2). The observed affected area of the cell layers was between 0.13 mm(2) and 1.10 mm(2). Since the irradiation of non-incubated cells below the mean power density of 10.9 x 10(10) W/cm(2) induced no necrosis, apparently no thermal damage was induced in the cells and necrosis of the 5-ALA incubated cells can be ascribed to the photodynamic effect induced by two-photon excitation. The successful photodynamic treatment of a large area of a monolayer cell culture induced by two-photon excitation offers new perspectives for photodynamic treatment modalities.  相似文献   

2.
The effects of aminolevulinic acid (ALA)-based photodynamic therapy (PDT) on tumor blood flow are controversial. This study examines the effects of ALA and Photofrin-based PDT on blood flow of Colon-26 tumors implanted in mice as well as the effects of ALA-based PDT on blood flow of human colorectal carcinomas and a carcinoid tumor in situ. Tumors are implanted in both flanks of mice. One tumor of each animal serves as a control. Blood flow is measured using a laser Doppler method. Tumor blood flow in mice not receiving a photosensitizer but treated with three different light fluences (50, 100 and 150 J/cm2) does not differ significantly from blood flow in the untreated tumor in the opposite flank. PDT after ALA administration using the three different light fluences does not significantly affect blood flow. In contrast, PDT after Photofrin administration causes a significant decrease in tumor blood flow with each light fluence, but this change is not as dramatic as reported in other studies. In contrast to mice, six patients who receive ALA prior to surgery all show a decrease in blood flow (mean = 51.8%, p < 0.001) after PDT using 100 J/cm2. Comparison with other published results suggests that it is likely that flow measurement by the laser Doppler method underestimates the effects of PDT on tumor blood flow due to the depth of laser penetration. Nevertheless, the present observations on blood flow suggest that the effects of ALA-based PDT on adenocarcinomas of the colon and rectum as well as an intra-abdominal carcinoid tumor in humans are more pronounced than would be predicated by some animal studies.  相似文献   

3.
Although there is evidence that the p53 tumor suppressor plays a role in the response of some human cells to chemotherapy and radiation therapy, its role in the response of human cells to photodynamic therapy (PDT) is less clear. In order to examine the role of p53 in cellular sensitivity to PDT, we have examined the clonogenic survival of normal human fibroblasts that express wild-type p53 and immortalized Li-Fraumeni syndrome (LFS) cells that express only mutant p53, following Photofrin-mediated PDT. The LFS cells were found to be more resistant to PDT compared to normal human fibroblasts. The D37 (LFS cells)/D37 (normal human fibroblasts) was 2.8 +/- 0.3 for seven independent experiments. Although the uptake of Photofrin per cell was 1.6 +/- 0.1-fold greater in normal human fibroblast cells compared to that in LFS cells over the range of Photofrin concentrations employed, PDT treatment at equivalent cellular Photofrin levels also demonstrated an increased resistance for LFS cells compared to normal human fibroblasts. Furthermore, adenovirus-mediated transfer and expression of wild-type p53 in LFS cells resulted in an increased sensitivity to PDT but no change in the uptake of Photofrin per cell. These results suggest a role for p53 in the response of human cells to PDT. Although normal human fibroblasts displayed increased levels of p53 following PDT, we did not detect apoptosis or any marked alteration in the cell cycle of GM38 cells, despite a marked loss of cell viability. In contrast, LFS cells exhibited a prolonged accumulation of cells in G2 phase and underwent apoptosis following PDT at equivalent Photofrin levels. The number of apoptotic LFS cells increased with time after PDT and correlated with the loss of cell viability. A p53-independent induction of apoptosis appears to be an important mechanism contributing to loss of clonogenic survival after PDT in LFS cells, whereas the induction of apoptosis does not appear to be an important mechanism leading to loss of cell survival in the more sensitive normal human fibroblasts following PDT at equivalent cellular Photofrin levels.  相似文献   

4.
Experimental therapies for Barrett's esophagus, such as 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT), aim to ablate the premalignant Barrett's epithelium. However, the reproducibility of the effects should be improved to optimize treatment. Accurate irradiation with light of a proper wavelength (633 nm), fluence and fluence rate has shown to be critical for successful ALA-PDT. Here, we have used in situ light dosimetry to adjust the fluence rate measured within the esophagus for individual animals and monitored protoporphyrin IX (PpIX) fluorescence photobleaching simultaneously. Rats were administered 200 mg kg-1 ALA (n = 14) or served as control (n = 7). Animals were irradiated with an in situ measured fluence rate of 75 mW cm-2 and a fluence of 54 J cm-2. However, this more accurate method of light dosimetry did not decrease the variation in tissue response. Large differences were also observed in the dynamics of PpIX fluorescence photobleaching in animals that received the same measured illumination parameters. We found that higher PpIX fluorescence photobleaching rates corresponded with more epithelial damage, whereas lower rates corresponded with no response. A two-phased decay in PpIX fluorescence could be identified in the response group, with a rapid initial phase followed by a slower rate of photobleaching. Non-responders did not show the rapid initial decay and had a significantly lower rate of photobleaching during the second phase of the decay (P = 0.012).  相似文献   

5.
Methyl aminolevulinate photodynamic therapy (MAL-PDT) is utilized to successfully treat licensed indications (e.g. actinic keratosis (AK), superficial basal cell carcinoma (sBCC) and Bowen's disease (BD)) in the UK. Air cooling devices (ACD) are commonly utilized as a method of pain relief, however the effect of this on treatment outcome has never been extensively investigated. This non-randomized, retrospective observational controlled study investigated whether the application of the ACD limited photosensitiser (protoporphyrin IX - PpIX) photobleaching during irradiation and/or subsequent clinical outcome. Patients utilizing the ACD throughout treatment were observed to undergo significantly less PpIX photobleaching than the control group (P<0.001) and complete clinical clearances observed at 3 months were also reduced within the ACD group. Separate analysis of the different lesion types indicated that significantly less photobleaching occurred in AK lesions with ACD and all lesion types failed to fully utilize the accumulated PpIX when ACD was employed. The application of the ACD as pain relief during light irradiation therefore resulted in lower PpIX photobleaching which corresponded to a reduction in the efficacy of PDT treatment. Whilst the ACD is an effective method of dermatological PDT analgesia it should be utilized as sparingly as possible to minimize any deleterious effects on treatment outcome.  相似文献   

6.
The effects of Photofrin-mediated photodynamic therapy (PDT) on the in vitro cell survival and in vivo tumor growth of murine radiation-induced fibrosarcoma (RIF) cell tumors have been examined following in vivo PDT treatment of tumors. The response to in vivo PDT is examined in tumors derived from RIF-1 mouse fibrosarcoma cells and in tumors derived from RIF-8A cells, which show in vitro resistance to PDT. A significant reduction in tumor volume is observed over the first three days following in vivo PDT treatment of either 5 or 10 mg/ kg. The reduction in tumor volume is greater for a 10 compared to a 5 mg/ml dose and occurs to a similar extent for both RIF-1 and RIF-8A tumors. The re-growth is significantly delayed for RIF-1 compared to RIF-8A tumors, indicating a greater response for RIF-1 tumors compared to RIF-8A tumors following PDT. A reduced response of the RIF-8A compared to the RIF-1 tumor cells is also observed in the clonogenic survival of cells from tumors that were excised and explanted in vitro immediately following in vivo PDT treatment. These data indicate that the intrinsic cell sensitivity to PDT is an important component in the mechanism that leads to tumor response following in vivo photodynamic therapy.  相似文献   

7.
Protoporphyrin IX dimethyl ester (PME), a dimethyl esterification of protoporphyrin IX (PpIX), exhibits higher intracellular uptake into NPC/CNE2 cells, a poorly differentiated human nasopharyngeal carcinoma, than does PpIX. Phototoxicity studies reveal PME to be a more potent photosensitizer than is PpIX, at the early and late incubation time points. Correlating phototoxicity with subcellular localization indicates that PME is a more potent photosensitizer when its primary target of photodamage is mitochondria. Also, additional targeting of lysosome enhances phototoxicity.  相似文献   

8.
A comparative study of the cellular photosensitizing properties of protoporphyrin IX (PpIX) and photoprotoporphyrin (Ppp) was carried out in the transformed murine keratinocyte cell line, PAM 212. Time-course fluorescence studies were performed to determine the rate of uptake by cells together with fluorescence microscopy. The sensitized cells were laser irradiated with a range of light doses at 635 or 670 nm to determine the phototoxicity of the two compounds and to investigate their relative fluorescence photobleaching properties. Ppp showed enhanced phototoxicity at both its optimal activation wavelength of 670 nm (eight times more phototoxic than PpIX activated at its optimal wavelength of 635 nm for the same fluence) and at 635 nm (three times more phototoxic than PpIX at the same wavelength), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The photobleaching rate of Ppp in cells was found to be higher using 670 nm irradiation compared with that of PpIX at 635 nm irradiation. At 635 nm, however, the photobleaching rate of Ppp was comparable to that of PpIX. The photobleaching quantum yields of the two compounds in cells were found to be similar at approximately 5 x 10(-4), with the same value confirmed at both 670 and 635 nm irradiation for Ppp. The fluorescence lifetime of Ppp in cells was measured as 5.4 ns using time-correlated single photon counting.  相似文献   

9.
Photodynamic therapy (PDT) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. Maximizing the accumulation of the photosensitizer protoporphyrin IX (PpIX) within different cell types would be clinically useful. Dermatological PpIX-induced PDT regimes produce good clinical outcomes but this currently only applies when the lesion remains superficial. Also, as an adjuvant therapy for the treatment of primary brain tumors, fluorescence guided resection (FGR) and PDT can be used to highlight and destroy tumor cells unreachable by surgical resection. By employing iron chelators PpIX accumulation can be enhanced. Two iron-chelating agents, 1,2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) and dexrazoxane, were individually combined with the porphyrin precursors aminolevulinic acid (ALA), methyl aminolevulinate (MAL) and hexyl aminolevulinate (HAL). Efficacies of the iron-chelating agents were compared by recording the PpIX fluorescence in human squamous epithelial carcinoma cells (A431) and human glioma cells (U-87 MG) every hour for up to 6 h. Coincubation of ALA/MAL/HAL with CP94 resulted in a greater accumulation of PpIX compared to that produced by coincubation of these congeners with dexrazoxane. Therefore the clinical employment of iron chelation, particularly with CP94 could potentially increase and/or accelerate the accumulation of ALA/MAL/HAL-induced PpIX for PDT or FGR.  相似文献   

10.
Barrett's esophagus (BE) can experimentally be treated with 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT), in which ALA, the precursor of the endogenous photosensitizer protoporphyrin IX (PpIX) and subsequent irradiation with laser light are applied to destroy the (pre)malignant tissue. Accurate dosimetry is critical for successful ALA-PDT. Here, in vivo dosimetry and kinetics of PpIX fluorescence photobleaching were studied in a rat model of BE. The fluence and fluence rate were standardized in vivo and PpIX fluorescence was measured simultaneously at the esophageal wall during ALA-PDT and plotted against the delivered fluence rather than time. Rats with BE were administered 200 mg kg(-1) ALA (n = 17) or served as control (n = 4). Animals were irradiated with 633 nm laser light at a measured fluence rate of 75 mW cm(-2) and a fluence of 54 J cm(-2). Large differences were observed in the kinetics of PpIX fluorescence photobleaching in different animals. High PpIX fluorescence photobleaching rates corresponded with tissue ablation, whereas low rates corresponded with no damage to the epithelium. Attempts to influence tissue oxygenation by varying balloon pressure and ventilation were shown not to be directly responsible for the differences in effect. In conclusion, in vivo dosimetry is feasible in heterogeneous conditions such as BE, and PpIX fluorescence photobleaching is useful to predict the tissue response to ALA-PDT.  相似文献   

11.
Deoxyhypusine is a modified lysine and formed posttranslationally to be the eukaryotic initiation factor eIF5A by deoxyhypusine synthase, employing spermidine as butylamine donor. Subsequent hydroxylation of this deoxyhypusine-containing intermediate completes the maturation of eIF5A. The previous report showed that deoxyhypusine synthase was phosphorylated by PKC in vivo and the association of deoxyhypusine synthase with PKC in CHO cells was PMA-, and Ca(2+)/phospholipid-dependent. We have extended study on the phosphorylation of deoxyhypusine synthase by protein kinase CK2 in order to define its role on the regulation of eIF5A in the cell. The results showed that deoxyhypusine synthase was phosphorylated by CK2 in vivo as well as in vitro. Endogenous CK2 in HeLa cells and the cell lysate was able to phosphorylate deoxyhypusine synthase and this modification is enhanced or decreased by the addition of CK2 effectors such as polylysine, heparin, and poly(Glu, Tyr) 4:1. Phosphoamino acid analysis of this enzyme revealed that deoxyhypusine synthase is mainly phosphorylated on threonine residue and less intensely on serine. These results suggest that phosphorylation of deoxyhypusine synthase is CK2-dependent cellular event as well as PKC-mediated effect. However, there were no observable changes in enzyme activity between the phosphorylated and unphosphorylated forms of deoxyhypusine synthase. Taken together, besides its established function in hypusine modification involving eIF5A substrate, deoxyhypusine synthase and its phosphorylation modification may have other independent cellular functions because of versatile roles of deoxyhypusine synthase.  相似文献   

12.
The phototoxic effect of meso-tetra-hydroxyphenyl-chlorin (mTHPC)-mediated photodynamic therapy (PDT) on human microvascular endothelial cells (hMVEC) was compared with that on human fibroblasts (BCT-27) and two human tumor cell lines (HMESO-1 and HNXOE). To examine the relationship between intrinsic phototoxicity and intracellular mTHPC content, we expressed cell survival as a function of cellular fluorescence. On the basis of total cell fluorescence, HNXOE tumor cells were the most sensitive and BCT-27 fibroblasts the most resistant, but these differences disappeared after correcting for cell volume. Endothelial cells were not intrinsically more sensitive to mTHPC-PDT than tumor cells or fibroblasts. Uptake of mTHPC in hMVEC increased linearly to at least 48 h, whereas drug uptake in the other cell lines reached a maximum by 24 h. No difference in drug uptake was seen between the cell lines during the first 24 h, but by 48 h hMVEC had a 1.8- to 2.8-fold higher uptake than other cell lines. Endothelial cells showed a rapid apoptotic response after mTHPC-mediated PDT, whereas similar protocols gave a delayed apoptotic or necrotic like response in HNXOE. We conclude that endothelial cells are not intrinsically more sensitive than other cell types to mTHPC-mediated PDT but that continued drug uptake beyond 24 h may lead to higher intracellular drug levels and increased photosensitivity under certain conditions.  相似文献   

13.
In photodynamic therapy (PDT), light activates a photosensitizer added to a tissue, resulting in singlet oxygen formation and cell death. The photosensitizer phthalocyanine 4 (Pc 4) localizes primarily to mitochondrial membranes in cancer cells, resulting in mitochondria-mediated cell death. The aim of this study was to determine how lysosomes contribute to PDT-induced cell killing by mitochondria-targeted photosensitizers such as Pc 4. We monitored cell killing of A431 cells after Pc 4-PDT in the presence and absence of bafilomycin, an inhibitor of the vacuolar proton pump of lysosomes and endosomes. Bafilomycin was not toxic by itself, but greatly enhanced Pc 4-PDT-induced cell killing. To investigate whether iron loading of lysosomes affects bafilomycin-induced killing, cells were incubated with ammonium ferric citrate (30 μM) for 30 h prior to PDT. Ammonium ferric citrate enhanced Pc 4 plus bafilomycin-induced cell killing without having toxicity by itself. Iron chelators (desferrioxamine and starch-desferrioxamine) and the inhibitor of the mitochondrial calcium (and ferrous iron) uniporter, Ru360, protected against Pc 4 plus bafilomycin toxicity. These results support the conclusion that chelatable iron stored in the lysosomes enhances the efficacy of bafilomycin-mediated PDT and that lysosomal disruption augments PDT with Pc 4.  相似文献   

14.
Porphyrins such as protoporphyrin IX (PPIX) are known to occasionally cause conformational changes in proteins for which they are specific ligands. It has also been established that irradiation of porphyrins noncovalently intercalated between bases or bound to one of the grooves can cause conformational effects on DNA. Conversely, there is no evidence reported in the literature of conformational changes caused by noncovalently bound PPIX to globular proteins for which the porphyrin is not a specific ligand. This study shows that the irradiation of the porphyrin in the PPIX/lactoglobulin noncovalent complex indeed causes a local and limited (approximately 7%) unfolding of the protein near the location of Trp19. This event causes the intrinsic fluorescence spectrum of the protein to shift to the red by 2 nm and the average decay lifetime to lengthen by approximately 0.5 ns. The unfolding of lactoglobulin occurs only at pH >7 because of the increased instability of the protein at alkaline pH. The photoinduced unfolding does not depend on the presence of O2 in solution; therefore, it is not mediated by formation of singlet oxygen and is likely the result of electron transfer between the porphyrin and amino acid residues.  相似文献   

15.
The phototoxicity of two new porphyrin photosensitizers, diarginine diprotoporphyrinate (PP(Arg)2) and N,N-diphenylalanyl protoporphyrin (PP(Phe)2), and the synergistic effect of 5-methoxyposralen (5-MOP) have been studied in comparison with that of protoporphyrin IX (PPIX). Under ultraviolet-A (UV-A) irradiation (lambda=365 nm), the phototoxicity of the porphyrins toward cultured human fibroblasts and keratinocytes decreases in the order: PPIX > PP(Arg)2 > PP(Phe)2. A synergistic effect of 5-MOP on the phototoxicity of PPIX, PP(Arg)2 and PP(Phe)2 has been observed. The combination of PPIX, PP(Arg)2 and PP(Phe)2 with 0.1-0.5 microM 5-MOP significantly potentiates the phototoxicity of the three porphyrins. The most effective potentiation was observed with the water-soluble PP(Arg)2 and 5-MOP concentrations lower than 0.75 microM. Above this 5-MOP concentration this potentiation is abolished. The intracellular concentration of PPIX and PP(Phe)2 is independent of the presence of 5-MOP. On the other hand, the intracellular content of PP(Arg)2 is decreased in a concentration-dependent manner by the psoralen. Illumination with red light, not absorbed by 5-MOP, leads to a weak potentiation of the PP(Arg)2 phototoxic effect in the presence of 5-MOP, suggesting that dark interaction of 5-MOP with cell membranes aggravated by porphyrin photosensitization is involved in the observed phenomena. The results are tentatively explained by differences in hydrophobicity and molecular structures of the examined photosensitizers. PPIX, which is barely soluble in water, has a significantly higher affinity for cell membranes and simultaneously exerts a stronger phototoxic effect than PP(Arg)2 whose solubility in water is high. On the other hand, the weak phototoxicity of PP(Phe)2 could be explained by the steric hindrance brought by the phenylalanyl substituents on the pyrrole ring. The loss in the PP(Arg)2 cell content probably explains the inhibition of the synergistic effect of 5-MOP on the PP(Arg)2 phototoxicity at high 5-MOP concentration. This study suggests that PP(Arg)2 in combination with 5-MOP might reveal a strong phototoxic effect when applied to skin cancer treatment.  相似文献   

16.
Cellular responses to photodynamic therapy (PDT) include induction of heat shock proteins (HSP). We examined meso-tetrahydroxyphenyl chlorin (mTHPC) PDT-mediated HSP activation in EMT6 cells stably transfected with a plasmid containing the gene for green fluorescent protein (GFP) driven by an hsp70 promoter. mTHPC incubation induced concentration-dependent GFP expression. Irradiation of cells exposed to a sensitizer concentration that induced a slight increase in GFP and no loss of cell viability resulted in fluence-dependent GFP accumulation. In response to drug only and to PDT, GFP levels increased to a maximum of four- to five-fold above control levels with increasing drug or fluence and then decreased at higher doses. A trypan blue-exclusion assay confirmed that decreased GFP levels in both cases were due to a loss of cell viability. For initial evaluation in vivo, HSP70/ GFP-transfected EMT6 tumors were grown in BALB/c mice and subjected to mTHPC-PDT with a fluence of 1 J/cm2. Six hours after PDT, GFP fluorescence was imaged in these tumors through the intact skin in vivo. These results indicate that sublethal doses of mTHPC-PDT stimulate GFP expression under the control of an hsp70 promoter and illustrate the potential of noninvasively monitoring reporter protein fluorescence as a measure of molecular response to PDT.  相似文献   

17.
Photodynamic therapy (PDT) is a promising modality for the treatment of solid tumors that combines a photosensitizing agent and light to produce cytotoxic reactive oxygen species that lead to tumor cell death. The recent introduction of bioluminescence imaging (BLI), involving the use of the luciferase gene (luc) transferred into target tumor cells, followed by systemic administration of luciferin and detection of the emitted visible chemiluminescence photons, offers the potential for longitudinal imaging of tumor growth and therapeutic response in single animals. We demonstrate in this study the first results of the use of BLI to assess the response of an intracranial brain tumor model (9L rat gliosarcoma) to aminolevulinic acid (ALA)-mediated PDT. Complementary in vitro experiments with the luciferase-transfected 9L cells show that the decrease in the luminescent signal after PDT correlates with cell kill. In vivo imaging shows a decrease in the BLI signal from the tumor after ALA-PDT treatment, followed by tumor regrowth. Furthermore, preliminary studies using cells transfected with a hypoxia-responsive vector show an increase in bioluminescence within 4 h after Photofrin-mediated PDT, demonstrating the ability to observe stress-gene responses. These results suggest that BLI can be used to provide spatiotemporal information of intracranial brain tumor responses after PDT and may serve as a valuable response-endpoint measure.  相似文献   

18.
Several previous studies have suggested that the peripheral benzodiazepine receptor (PBR) on the mitochondrial surface was an important target for photodynamic therapy (PDT). In this study we compared PBR affinity vs photodynamic efficacy of protoporphyrin-IX (PP-IX) and two structural analogs, PP-III and PP-XIII, using murine leukemia L1210 cells in culture. The results indicate that the three agents have approximately equal hydrophobicity, affinity for L1210 cells and ability to initiate photodamage leading to an apoptotic response. But only PP-IX had significant affinity for the PBR. These data indicate that the relationship between PDT efficacy and PBR affinity may hold only for sensitizers with the PP-IX configuration.  相似文献   

19.
Photodynamic therapy (PDT) is a new treatment modality for solid tumors as well as for flat lesions of the gastrointestinal tract. Although the use of 5-aminolevulinic acid-induced protoporphyrin IX (PPIX) shows important advantages over other photosensitizers, the main mechanisms of phototoxicity induced are still poorly understood. Three human colon carcinoma cell lines with variable degrees of differentiation and a normal colon fibroblast cell line were used to generate a suitable in vitro model for investigation of photosensitizer concentration as well as the applied light dose. Also, the effects of intracellular photosensitizer localization on efficiency of PDT were examined, and cellular parameters after PDT (morphology, mitochondrial transmembrane potential, membrane integrity and DNA fragmentation) were analyzed to distinguish between PDT-induced apoptosis from necrosis. The fibroblast cell line was less affected by phototoxicity than the tumor cells to a variable degree. Well-differentiated tumor cells showed higher toxicity than less-differentiated cells. After irradiation, cell lines with cytosolic or mitochondrial PPIX localization indicate a loss of mitochondrial transmembrane potential resulting in growth arrest, whereas membrane-bound PPIX induces a loss of membrane integrity and consequent necrosis. Although the absolute amount of intracellular photosensitizer concentration plays the main determining role for PDT efficiency, data indicate that intracellular localization has additional effects on the mode of cell damage.  相似文献   

20.
We examined the apoptotic effects of photodynamic therapy (PDT) in leukemia cells (HL60) and lymphoma cells (Raji). Moreover, we also investigated the relationship of apoptosis induced by PDT to heat shock protein (HSP) expression. To induce 80% of cell death by PDT, HL60 cells required 6 microg/mL and Raji cells required 9 microg/mL of Photofrin. PDT induced apoptosis in 77.2% of HL60 and in 0.4% of Raji at lethal dose (LD80) conditions. The cell line in which apoptosis is predisposed may be more susceptible to PDT compared with the cell line in which necrosis is predisposed. Furthermore, HSP-70 was expressed constitutively in Raji cells but not in HL60 cells. Heat treatment of HL60 cells induced expression of HSP-70 and resulted in significant reduction of PDT-mediated apoptosis. From the results of this experiment, it is suggestive that HSP-70 contributes to inhibition of apoptosis mediated by PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号