首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I.IntroductionTilepl'ogl'ess11as.toifcertainextent,beenmadeintheelastic-plasticconstitutivetheoryatII[litedefbrlllations.Coil'paredwitllotherconstitutiverelations,thegeneralizedPrandtlReuss(P-R)equatiollsareextensivelystudiedandwidelyapplied.IndevelopingthegeneralizedP-Requation.itisusuallyassumedthatthedeformationrate(thesymmetricpartorvelocitygradiellt)isdecolllposedintotheelasticpartandplasticpart.TheplasticLIcf\'l.llliltlollrittcobeystilenormalfi(,xvrilleasillthecaseofinfinitcsilllnld…  相似文献   

2.
Corotational rates in constitutive modeling of elastic-plastic deformation   总被引:1,自引:0,他引:1  
The principal axes technique is used to develop a new hypoelastic constitutive model for an isotropic elastic solid in finite deformation. The new model is shown to produce solutions that are independent of the choice of objective stress rate. In addition, the new model is found to be equivalent to the isotropic finite elastic model; this is essential if both models describe the same material.

The new hypoelastic model is combined with an isotropic flow rule to form an elastic-plastic rate constitutive equation. Use of the principal axes technique ensures that the stress tensor is coaxial with the elastic stretch tensor and that solutions do not depend on the choice of objective stress rate. The flow rule of von Mises and a parabolic hardening law are used to provide an example of application of the new theory. A solution is obtained for the prescribed deformation of simple rectilinear shear of an isotropic elastic and isotropic elastic-plastic material.  相似文献   


3.
The shear and extensional rheology of three concentrated poly(ethylene oxide) solutions is examined. Shear theology including steady shear viscosity, normal stress difference and linear viscoelastic material functions all collapse onto master curves independent of concentration and temperature. Extensional flow experiments are performed in fiber spinning and opposed nozzles geometries. The concentration dependence of extensional behavior measured using both techniques is presented. The zero-shear viscosity and apparent extensional viscosities measured with both extensional rheometers exhibit a power law dependence with polymer concentration. Strain hardening in the fiber spinning device is found to be of similar magnitude for all test fluids, irrespective of strain rate. The opposed nozzle device measures an apparent extensional viscosity which is one order of magnitude smaller than the value determined with the fiber spinline device. This could be attributed to errors caused by shear, dynamic pressure, and the relatively small strains developed in the opposed nozzle device. This instrument cannot measure local kinematics or stresses, but averages these values over the non-homogenous flow field. These results show that it is not possible to measure the extensional viscosity of non-Newtonian and shear thinning fluids with this device. Fiber spin-line experiments are coupled with a momentum balance and constitutive model to predict stress growth and diameter profiles. A one-mode Giesekus model accurately captures the plateau values of steady and dynamic shear properties, but fails to capture the gradual shear thinning of viscosity. Giesekus model parameters determined from shear rheology are not capable of quantitatively predicting fiber spinline kinematics. However, model parameters fit to a single spinline experiment accurately predict stress growth behavior for different applied spinline tensions.  相似文献   

4.
A new approach to the solution of finite plane-strain problems for compressible Isotropie elastic solids is considered. The general problem is formulated in terms of a pair of deformation invariants different from those normally used, enabling the components of (nominal) stress to be expressed in terms of four functions, two of which are rotations associated with the deformation. Moreover, the inverse constitutive law can be written in a simple form involving the same two rotations, and this allows the problem to be formulated in a dual fashion.For particular choices of strain-energy function of the elastic material solutions are found in which the governing differential equations partially decouple, and the theory is then illustrated by simple examples. It is also shown how this part of the analysis is related to the work of F. John on harmonic materials.Detailed consideration is given to the problem of a circular cylindrical annulus whose inner surface is fixed and whose outer surface is subjected to a circular shear stress. We note, in particular, that material circles concentric with the annulus and near its surface decrease in radius whatever the form of constitutive law within the given class. Whether the volume of the material constituting the annulus increases or decreases depends on the form of law and the magnitude of the applied shear stress.  相似文献   

5.
6.
This paper investigates the edge crack problem for a coating/substrate system with a functionally graded interfacial zone under the condition of antiplane deformation. With the interfacial zone being modeled by a nonhomogeneous interlayer having the continuously varying shear modulus between the dissimilar, homogeneous phases of the coated medium, the coating is assumed to contain an edge crack at an arbitrary angle to the interfacial zone. The Fourier integral transform method is used in conjunction with the coordinate transformations of basic field variables. Formulation of the proposed crack problem is then reduced to solving a singular integral equation with a generalized Cauchy kernel. The mode III stress intensity factors are defined and evaluated in terms of the solution to the integral equation. In the numerical results, the values of the stress intensity factors are plotted, illustrating the effects of the crack orientation angle for various material and geometric combinations of the coating/substrate system with the graded interfacial zone.  相似文献   

7.
Summary Experimental observations on a steady isothermally extending filament of a water/glycerol solution of Separan AP 30 are presented. Photographic records were analysed to give filament diameter (and hence filament speed) as a function of distance below the extrusion die (a glass capillary). Measurements of inline tension were also made. When effects of weight, surface tension and air drag were accounted for, the extensional stress at every point along the filament could be calculated. Results for stress versus extension rate are presented for various flow situations.Independent rheogoniometric measurements of simple shear viscosity, first and second normal stress differences, and of a crude relaxation time were also made at comparable rates of deformation.Comparison shows that apparent extensional viscosities are several orders of magnitude larger than corresponding simple shear viscosities. After discussion, no conclusion can be drawn about what constitutive equation is most suitable to describe the results.An analysis to predict air drag is given.With 18 figures  相似文献   

8.
Constitutive equations for electrorheological (ER) fluids have been based on experimental results for steady shearing flows and constant electric fields. The fluids have been modeled as being rigid until a yield stress is reached. Additional stress is then proportional to the shear rate. Recent experimental results indicate that ER materials have a regime of solid-like response when deformed from a rest state. They behave in a viscoelastic-like manner under sinusoidal shearing and exhibit time-dependent response under sudden changes in shear rate or electric field. In this work, a constitutive theory for ER materials is presented which accounts for these recent experimental observations. The stress is given by a functional of the deformation gradient history and the electric field vector. Using the methods of continuum mechanics, a general three-dimensional constitutive equation is obtained. A sample constitutive equation is introduced which is then used to determine the response of an ER material for different shear histories. The calculated shear response is shown to be qualitatively similar to that observed experimentally.  相似文献   

9.
The nonlinear elastic response of a class of materials for which the deformation is subject to an internal material constraint described in experiments by James F. Bell on the finite deformation of a variety of metals is investigated. The purely kinematical consequences of the Bell constraint are discussed, and restrictions on the full range of compatible deformations are presented in geometrical terms. Then various forms of the constitutive equation relating the stress and stretch tensors for an isotropic elastic Bell material are presented. Inequalities on the mechanical response functions are introduced. The importance of these in applications is demonstrated in several examples throughout the paper.This paper focuses on homogeneous deformations. In a simple illustration of the theory, a generalized form of Bell's empirical rule for uniaxial loading is derived, and some peculiarities in the response under all-around compressive loading are discussed. General formulae for universal relations possible in an isotropic elastic, Bell constrained material are presented. A simple method for the determination of the left stretch tensor for essentially plane problems is illustrated in the solution of the problem of pure shear of a materially uniform rectangular block. A general formula which includes the empirical rule found in pure shear experiments by Bell is derived as a special case. The whole apparatus is then applied in the solution of the general problem of a homogeneous simple shear superimposed on a uniform triaxial stretch; and the great variety of results possible in an isotropic, elastic Bell material is illustrated. The problem of the finite torsion and extension of a thin-walled cylindrical tube is investigated. The results are shown to be consistent with Bell's data for which the rigid body rotation is found to be quite small compared with the gross deformation of the tube. Several universal formulas relating various kinds of stress components to the deformation independently of the material response functions are derived, including a universal rule relating the axial force to the torque.Constitutive equations for hyperelastic Bell materials are derived. The empirical work function studied by Bell is introduced; and a new constitutive equation is derived, which we name Bell's law. On the basis of this law, we then derive exactly Bell's parabolic laws for uniaxial loading and for pure shear. Also, form Bell's law, a simple constitutive equation relating Bell's deviatoric stress tensor to his finite deviatoric strain tensor is obtained. We thereby derive Bell's invariant parabolic law relating the deviatoric stress intensity to the corresponding strain intensity; and, finally, Bell's fundamental law for the work function expressed in these terms is recovered. This rule is the foundation for all of Bell's own theoretical study of the isotropic materials cataloged in his finite strain experiments on metals, all consistent with the internal material constraint studied here.  相似文献   

10.
The extensional viscometer developed earlier by the authors was refined and used to extend very dilute (50 ppm) solutions of polyacrylamide in distilled water. A slender liquid filament was stretched by the use of a suction device, and this resulted in the spinning of the fiber. By varying the volumetric flow rate and the filament length, stretch rates in the 100–1000 s−1 range were easily obtained. The corresponding tensile stresses were very large, and these gave apparent extensional viscosities of the order of 200 P (20 Pa s). In contrast to this, the material functions in shear were difficult to measure, except for the shear viscosity which showed pronounced shear thinning. It was found that all the measurements, in shear as well as extension, could be explained based on the four constant Johnson-Segalman constitutive equation.  相似文献   

11.
The problems of converting the torque and normal force versus rim shear rate data generated by parallel disk rheometers into shear stress and normal stress difference as functions of shear rate are formulated as two independent integral equations of the first kind. Tikhonov regularization is used to obtain approximate solutions of these equations. This way of handling parallel disk rheometer data has the advantage that it is independent of the rheological constitutive equation and noise amplification is kept under control by the user-specified parameter in Tikhonov regularization. If the fluid under test exhibits a yield stress, Tikhonov regularization computation will simultaneously give an estimate of the yield stress. The performance of this method is demonstrated by applying it to a number of data sets taken from the published literature and to laboratory measurements conducted specifically for this investigation.  相似文献   

12.
In this work we study a version of the three constant differential-type Oldroyd constitutive relation which allows distinct objective time derivatives for the extra stress and the stretching. We integrate the constitutive equation and determine an equivalent history integral representation for this model for the general class of viscometric motions. For certain choices of the material parameters and initial conditions, we find that this model allows for the development of shear rate discontinuities in the flow domain as a steady viscometric flow is achieved. Correspondingly, we also give evidence that intense shear rate oscillations may occur during the transient period as an impulsively started viscometric flow in a channel tends to a steady state under a constant critical shear stress. This critical shear stress lies in an interval of values for which the material experiences the phenomenon of “flow yielding”. A qualitative comparison with experimental data is made for certain creams and greases. The material instabilities inherent in this constitutive theory for viscometric motions are suggestive of the instabilities that occur in many viscoelastic fluids such as sharkskin patterns, wavy fracture, and spurt flow.  相似文献   

13.
14.
This paper presents a study of a silicone oil (poly(dimethyl siloxane)) in extensional deformation using an instrument developed recently by the authors. Data from steady shear and low amplitude sinusoidal deformation of this liquid clearly establish that it is weakly elastic. The viscometric data, for shear rates less than 100 s −1, are best represented by either the Maxwell model or the Jeffrey's model, the latter being marginally superior. The extensional data show that at low deformation rates, this fluid exhibits a Newtonian behavior with an apparent extensional viscosity equal to three times the shear viscosity. Under these conditions the velocity profiles along the spinline are also well represented by the Newtonian model. However, at higher deformation rates better predictions of the velocity profiles are obtained from the Jeffrey's and Maxwell models. At deformation rates above 100 s −1 none of these simple models is adequate. Under the conditions used in these experiments, the fractional increase in tensile stress along the fiber is shown both theoretically and experimentally to be a unique function of the total strain. Furthermore, the apparent extensional viscosity at any point on the spinline can be calculated from steady state expressions if allowance is made for the variation of stretch rates by defining a time averaged stretch rate.The results obtained here show that elasticity must be considered if these model liquids are used to conduct rheological experiments at high deformation rates. Additionally, it is found that elastic effects in extension can be predicted using simple constitutive equations provided viscometric data can be represented properly in the deformation rate range of interest. Finally, the present research further substantiates the utility of the extensional viscometer developed by the authors.  相似文献   

15.
The present paper describes a micromechanical technique to determine rheological properties of viscous fluid reinforced with unidirectional continuous fibers. Fluid viscosity is described by a shear thinning model and high viscosity is considered for continuous fibers having considerable rigidity compared to net fluid. The microstructure is identified by a representative volume element that is subjected to equivalent macroscopic deformation fields. The energy balance and periodicity conditions are considered to relate deformation and stress in macro and micro-levels. It is shown that response of viscous fluid reinforced with rigid fibers depends on deformation history as well as rate-of-deformation in the transverse intraply shear and transverse squeeze flows. An orthotropic viscous constitutive equation is derived to describe response of such materials. The material viscosities are evaluated for viscous fluid reinforced with different fiber volume fractions during deformation applied in different rates of deformation. The results are used to derive the functions predicting effective anisotropic viscosities of reinforced fluid.  相似文献   

16.
Based upon the updated Lagrangian approach, the principle of virtual work denoted by the updated Kirchhoff stress increment tensors and the updated Green strain increment tensors and the integral constitutive relation expressed by Kirchhoff stress tensors and Green strain tensors are used and the viscoelastic large deformation incremental variational equation is derived. By means of the 8-nodes isoparametric finite element the program of two-dimensional problem is written. Good agreement is found among the results obtained from this paper and other literatures.  相似文献   

17.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

18.
Creep and stress relaxation are known to be interrelated in linearly viscoelastic materials by an exact analytical expression. In this article, analytical interrelations are derived for nonlinearly viscoelastic materials which obey a single integral nonlinear superposition constitutive equation. The kernel is not assumed to be separable as a product of strain and time dependent parts. Superposition is fully taken into account within the single integral formulation used. Specific formulations based on power law time dependence and truncated expansions are developed. These are appropriate for weak stress and strain dependence. The interrelated constitutive formulation is applied to ligaments, in which stiffness increases with strain, stress relaxation proceeds faster than creep, and rate of creep is a function of stress and rate of relaxation is a function of strain. An interrelation was also constructed for a commercial die-cast aluminum alloy currently used in small engine applications.  相似文献   

19.
ARATETYPEMETHODFORLARGEDEFORMATIONPROBLEMSOFNONLINEARELASTICITYLiangFei(梁非),ZhangShan-yuan(张善元)(TaiyuanUniversityofTechnology...  相似文献   

20.
A phenomenological one-dimensional constitutive model, characterizing the complex and highly nonlinear finite thermo-mechanical behavior of viscoelastic polymers, is developed in this investigation. This simple differential form model is based on a combination of linear and nonlinear springs with dashpots, incorporating typical polymeric behavior such as shear thinning, thermal softening at higher temperatures and nonlinear dependence on deformation and loading rate. Another model, of integral form, namely the modified superposition principle (MSP), is also modified further and used to show the advantage of the newly developed model over MSP. The material parameters for both models are determined for Adiprene-L100, a polyurethane based rubber. The constants once determined are then utilized to predict the behavior under strain rate jump compression, multiple step stress relaxation loading experiment and free end torsion experiments. The new constitutive model shows very good agreement with the experimental data for Adiprene-L100 for the various finite loading paths considered here and provides a flexible framework for a three-dimensional generalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号