首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three platinum(II) complexes were synthesized and studied to characterize their ability as an anion carrier in a PVC membrane electrode. The polymeric membrane electrodes (PME) and also coated glassy carbon electrodes (CGCE) prepared with one of these complexes showed excellent response characteristics to perchlorate ions. The electrodes exhibited Nernstian responses to ClO4 ions over a wide concentration range from 1.5 × 10−6 to 2.7 × 10−1M for PME and 5.0 × 10−7 to 1.9 × 10−1M for CGCE with low detection limits (9.0 × 10−7M for PME and 4.0 × 10−7M for CGCE). The electrodes possess fast response time, satisfactory reproducibility, appropriate lifetime and, most importantly, good selectivity toward ClO4 relative to a variety of other common anions. The potentiometric response of the electrodes is independent of the pH of the test solution in the pH range 2.0–9.0. The proposed sensors were used in potentiometric determination of perchlorate ions in mineral water and urine samples. Correspondence: Ahmad Soleymanpour, Department of Chemistry, Damghan Basic Science University, Damghan, Iran.  相似文献   

2.
 The construction of a plasticised PVC matrix-type promazinium cation-selective membrane electrode and its use in the potentiometric determination of promazine hydrochloride in pharmaceutical preparations are described. It is based on the use of the ion-associate species, formed by promazinium cation and tetraphenylborate (TPB) counter ion. The basic electrode performance characteristics are evaluated according to IUPAC recommendations. It exhibited a linear response for 1 × 10−2−1 × 10−5 M of promazine hydrochloride solutions with a cationic Nernstian slope over the pH range 2–6. Common organic and inorganic cations showed negligible interference. Direct potentiometric determination of 1 × 10−2−1 × 10−5 M aqueous promazine hydrochloride using this membrane electrode system showed an average recovery of 99.5% with a mean standard deviation of 1.5%. This electrode was successfully used for monitoring the titration of promazine hydrochloride with sodium tetraphenyl borate and for determining promazine hydrochloride in ampoules. Received June 15, 2001 Revision November 6, 2001  相似文献   

3.
A flow injection chemiluminescence method is proposed for the determination of cobalt, based on the strong catalytic effect of Cobalt(II) (1,10-phenanthroline)3 complex on the lucigenin-periodate reaction in alkaline medium. Under the optimum experimental conditions, the chemiluminescence signal responded linearly to the concentration of cobalt(II) in the 1.0 × 10−9–3.0 × 10−7 g mL−1 range with a detection limit of 4.4 × 10−10 g mL−1 cobalt(II). The relative standard deviation for the determination of 5.0 × 10−8 g mL−1 of cobalt was 2.3% in eleven replicated measurements. The method was successfully applied to the determination of cobalt(II) in pharmaceutical preparations.  相似文献   

4.
Summary.  A new selective, sensitive, and simple kinetic method is developed for the determination of trace amounts of iodide. The method is based on the catalytic effect of iodide on the reaction of triflupromazine (TFP) with H2O2. The reaction is followed spectrophotometrically by tracing the oxidation product at 498 nm within 1 min after addition of H2O2. The optimum reaction conditions are TFP (0.4 × 10−3 M), H2SO4 (1.0M), H3PO4 (2.0M), and H2O2 (1.6M) at 30°C. Following this procedure, iodide can be determined with a linear calibration graph up to 4.5 ng ċ cm−3 and a detection limit of 0.04 ng ċ cm−3, based on the 3 Sb criterion. The method can also be applied to the determination of iodate and periodate ions. Determination of as little as 0.2, 1.0, 2.0, and 4.0 ng ċ cm−3 of I, IO3 -, or IO4 - in aqueous solutions gave an average recovery of 98% with relative standard deviations below 1.6% (n = 5). The method was applied to the determination of iodide in Nile river water and ground waters as well as in various food samples after alkaline ashing treatment. The method is compared with other catalytic spectrophotometric procedures for iodide determination. Received January 19, 2001. Accepted (revised) March 12, 2001  相似文献   

5.
 A rapid flow-injection method with chemiluminescence (CL) detection is described for the determination of glutathione (GSH). The method is based on the CL reaction of luminol and hydrogen peroxide. GSH can greatly enhance the chemiluminescence intensity in 0.1 mol/L borax–sodium hydroxide buffer solution (pH = 9.7). The maximum CL intensity was directly proportional to the concentration of GSH in the range 3.0 × 10−7–2.0 × 10−5 mol/L, and the detection limit was 6.8 × 10−8 mol/L. The relative standard deviation was 3.4% for 5.0 × 10−6 mol/L of GSH (n = 11). Received October 23, 2001; accepted June 18, 2002  相似文献   

6.
Spectroradiometric measurements of reflectance and CIELAB hue-angle, were tested for K(I) determination using disposable optical sensors based on ion exchange mechanism. The linearisation of the sigmoidal response function, using a logistic regression, increases the linear range noticeably to 7.65 × 10−8–1.5 M and 1.22 × 10−7–1.5 M for CIELAB hue-angle and reflectance, respectively. The trueness of both procedures was demonstrated comparing it with results obtained by a DAD spectrophotometer used as a reference measurement procedure. The usefulness of the procedure was checked by analysing K(I) in different types of waters and beverages. Additionally, we studied the possible visual discrimination for the whole potassium range tested, obtaining the possibility of discriminating twelve groups of concentrations.  相似文献   

7.
A new chemiluminescence (CL) method combined with flow injection technique is described for the determination of Cr(III) and total Cr. It is found that a strong CL signal is generated from the reaction of Cr(III), lucigenin and KIO4 in alkaline condition. The determination of total Cr is performed by pre-reduction of Cr(VI) to Cr(III) by using H2SO3. The CL intensity is linearly related to the concentration of Cr in the range 4.0 × 10−10–1.0 × 10−6 g mL−1. The detection limit (3s b) is 1 × 10−10 g mL−1 Cr and the relative standard deviation is 1.9% (5.0 × 10−8 g mL−1 of Cr(III) solution, n = 11). The method was applied to the determination of Cr(III) and total Cr in water samples and compared satisfactorily with the official method.  相似文献   

8.
 A fluorescence quenching method for the determination of vanadium (V) based on the vanadium- catalyzed oxidation of rhodamine 6G (R6G) with periodate in the presence of ethylenediaminetetraacetic acid disodium salt (EDTA) in sulfuric acid medium is described. The fluorescence was measured with excitation and emission wavelengths of 525 and 555 nm, respectively. The calibration graph for vanadium (V) had linear ranges of 3.0 × 10−9–1.5 × 10−8 mol/l and 1.5 × 10−8–4.0 × 10−8 mol/l, respectively. The detection limit was 1.7 × 10−9 mol/l. The proposed method was successfully applied to the determination of vanadium (V) in river water, rain water and cast iron samples. Received June 29, 2001 Revision October 9, 2001  相似文献   

9.
 Novel miniaturized carboxylated poly(vinyl chloride) and poly fluoro sulfonate (Nafion) matrix membrane sensors in an all-solid state graphite support were developed, electrochemically evaluated and used for the assay of verapamil drug. These sensors incorporate the native polymers without plasticizer and/or drug-ion pair complex. Upon soaking these sensors in verapamil test solution, electroactive self regenerated membranes are formed and a near-Nernstian potentiometric response is induced for verapamil over the concentration range 1×10−2–1×10−5 M with a cationic slope of 56–57 mV decade−1 of concentration. Inherent advantages of these sensors include fast response (<10 s), long life time (>6 months), good thermal stability (up to 60 °C), high sensitivity (down to 1 μg ml−1), extended working pH range (2–8) and reasonable selectivity. Verapamil could be determined in various dosage forms with an average recovery of 98.8% (st.dev. 0.8%) of the nominal concentration without any significant interferences from various excipients and diluents commonly used in drug formulations. Received August 17, 1998. Revision February 9, 1999.  相似文献   

10.
 A new sensitive method exploiting solid-phase spectrophotometry is proposed for the determination of cobalt in pharmaceutical preparations. The chromogenic reagent 1-(2-thiazolylazo)-2-naphthol (TAN) was immobilized on C18 bonded silica loaded into a home-made cell with 1.5 mm of optical path for cobalt determination. Cobalt(II) reacts with TAN on C18 material, at pH 6.0–7.5, to give a coloured complex which has maximum absorption at 572 nm. In this way, the sample was passed through the cell and Co(II) ions were quantitatively retained on the solid-phase. After the direct measurement of light-absorption in the solid phase, only the cobalt was eluted with 0.1 mol L−1 hydrochloric acid. The cell was washed with water and then another sample solution could be passed through the cell. The procedure allowed the determination of cobalt in the range of 10–160 μg L−1 with coefficient of variation of 4.7% (n=10) and apparent molar absorptivity of 2.62 × 106 L mol−1 cm−1 using sample volume of 3-mL. Received May 15, 2000. Revision August 28, 2000.  相似文献   

11.
 Simple, rapid, sensitive and selective methods for the determination of Cr(III) and W(VI) with flavonol derivatives in the presence of surface-active agents are proposed. In the pH ranges 3.4–4.2 and 1.9–2.5, the molar absorptivities of Cr(III)-morin-emulsifier S (EFA) and W(VI)-morin-polyvinylpyrrolidone (PVP) systems are 1.13×105 and 2.13×104 L mol−1 cm−1 at 435 and 415 nm, respectively. The Cr(III)-quercetin-PVP and W(VI)-quercetin-cetylpyridinium bromide (CPB) systems are formed in the pH ranges 4–4.6 and 2.2–2.8 with molar absorptivities 1.02×105 and 9.02×104 L. mol−1 cm−1 at 441 and 419 nm, respectively. The linear dynamic ranges for the determination of Cr(III) and W(VI) with morin in the presence of EFA and PVP are 0.03–0.46 and 0.71–8.1 μg mL−1, respectively. The corresponding ranges with quercetin are 0.04–0.54 and 0.14–2.1 μg mL−1 of Cr(III) and W(VI), respectively. The r.s.d (n = 10) for the determination of 0.25 and 3.7 μg mL−1 of Cr(III) and W(VI) with morin and their detection limits are 0.88 and 0.99% and 0.016 and 0.63 μg mL−1, respectively. Using quercetin, the r.s.d (n = 10) for 0.22 and 1.2 μg mL−1 of Cr(III) and W(VI) and their detection limits are 0.92 and 0.91% and 0.015 and 0.08 μg mL−1, respectively. The critical evaluation of the proposed methods is performed by statistical analysis of the experimental data. The proposed methods are applied to determine Cr in steel, non-ferrous alloys, wastewater and mud filtrate and to the determination of W in steel. Received March 8, 1999. Revision January 21, 2000.  相似文献   

12.
In the presence of carbonate and uranine, the chemiluminescent intensity from the reaction of luminol with hydrogen peroxide was dramatically enhanced in a basic medium. Based on this fact and coupled with the technique of flow-injection analysis, a highly sensitive method was developed for the determination of carbonate with a wide linear range. The method provided the determination of carbonate with a wide linear range of 1.0 × 10−10–5.0 × 10−6 mol L−1 and a low detection limit (S/N = 3) of carbonate of 1.2 × 10−11 mol L−1. The average relative standard deviation for 1.0 × 10−9–9.0 × 10−7 mol L−1 of carbonate was 3.7% (n = 11). Combined with the wet oxidation of potassium persulfate, the method was applied to the simultaneous determination of total inorganic carbon (TIC) and total organic carbon (TOC) in water. The linear ranges for TIC and TOC were 1.2 × 10−6–6.0 × 10−2 mg L−1 and 0.08–30 mg L−1 carbon, respectively. Recoveries of 97.4–106.4% for TIC and 96.0–98.5% for TOC were obtained by adding 5 or 50 mg L−1 of carbon to the water samples. The relative standard deviations (RSDs) were 2.6–4.8% for TIC and 4.6–6.6% for TOC (n = 5). The mechanism of the chemiluminescent reaction was also explored and a reasonable explanation about chemical energy transfer from luminol to uranine was proposed. Figure Chemiluminescence profiles in batch system. 1, Injection of 100 μL of K2CO3 into 1.0 mL luminol-1.0 mL H2O2 solution; 2-3 and 4-5, Injection in sequence of 100 μL of K2CO3 and 100 μL of uranine into 1.0 ml luminol-1.0 mL H2O2 solution; Cluminol = 1.0 × 10−7 mol/L, CH2O2 = 1.0 × 10−5 mol/L, Curanine = 1.0 × 10−5 mol/L, CK2CO3 = 1.0 × 10−7 mol/L except for 4-5 where CK2CO3 = 1.0 × 10−4 mol/L  相似文献   

13.
The voltammetric behavior of strychnine has been studied with a pyrolytic graphite (PG) electrode. The redox process taking place at the PG electrode is discussed. The cyclic voltammetric response has also been evaluated with respect to various experimental conditions, such as scan rate, pH of the supporting electrolyte, strychnine concentrations and accumulation time. A highly sensitive voltammetric method for the determination of strychnine is consequently developed. The linear calibration is in the range of 1×10−6 M – 1.1×10−4 M, with the limit of detection (LOD) being 1×10−8 M. The precision is excellent with a relative standard deviation (RSD) of 2.3%. The proposed cyclic voltammetric methodology has been applied to the determination of strychnine in the extract of Strychno nux-vomica seeds using the standard addition method. Consistent results have been obtained from both the electrochemical approach described here and the previously reported HPLC method.  相似文献   

14.
A novel procedure was developed for the determination of trace cerium on the basis of anodic adsorption voltammetry of the Ce(III)–alizarin complexon (ALC) complex at a carbon paste electrode (CPE). The procedure is convenient to determine cerium individually in the presence of other rare earths because there is a 100 mV difference between the peak potentials of Ce(III)–ALC and other rare earth(III)–ALC complexes in a supporting electrolyte of 0.08 M HAc–NaAc and 0.012 M potassium biphthalate (pH 4.7) when performing linear-scanning from −0.2 to 0.8 V (vs. SCE) at 100 mV/s. The second-order derivative peak currents are directly proportional to the Ce(III) concentration over a range of 6.0 × 10−9–3.0 × 10−7 M. The detection limit is as low as 2.0 × 10−9 M (S/N = 3) for a 120 s preconcentration. An RSD of 3.5% was obtained for 15 determinations of Ce(III) at a concentration of 4.0 × 10−8 M on the same CPE surface. The method was applied successfully to the determination of cerium in samples of rare earth nodular graphite cast iron.  相似文献   

15.
A new H2O2 biosensor was fabricated on the basis of nanocomposite films of hemoglobin (Hb), silver nanoparticles (AgNPs), and multiwalled carbon nanotubes (MWNTs)–chitosan (Chit) dispersed solution immobilized on glassy carbon electrode (GCE). The immobilized Hb displayed a pair of well-defined and reversible redox peaks with a formal potential (E θ′) of −22.5 mV in 0.1 M pH 7.0 phosphate buffer solution. The apparent heterogeneous electron transfer rate constants (k s) in the Chit–MWNTs film was evaluated as 2.58 s−1 according to Laviron’s equation. The surface concentration (Γ*) of the electroactive Hb in the Chit–MWNTs film was estimated to be (2.48 ± 0.25) × 10−9 mol cm−2. Meanwhile, the Chit–MWNTs/Hb/AgNPs/GCE demonstrated excellently electrocatalytical ability to H2O2. Its apparent Michaelis–Menten constant (K Mapp) for H2O2 was 0.0032 mM, showing a good affinity. Under optimal conditions, the biosensors could be used for the determination of H2O2 ranging from 6.25 × 10−6 to 9.30 × 10−5 mol L−1 with a detection limit of 3.47 × 10−7 mol L−1 (S/N = 3). Furthermore, the biosensor possessed rapid response to H2O2 and good stability, selectivity, and reproducibility.  相似文献   

16.
 A sensitive method for the determination of amitraz pesticide at nanomolar level by adsorptive stripping voltammetry at a hanging mercury drop electrode is described. The cyclic voltammograms demonstrate the adsorption of this compound on the mercury electrode. A systematic study of the various experimental parameters, that affect the stripping response, was carried out by differential pulse voltammetry. Using an accumulation potential of −0.50 V, and 30 s accumulation time, the limit of detection was found to be 2.3 × 10−9 mol L−1 and the relative standard deviations (n = 5) was 2.2% at concentration level of 5.0 × 10−8 mol L−1 of amitraz. The influence of diverse ions and some other pesticides was investigated. Finally, the method was applied to the determination of amitraz in spiked soil and water. The relative standard deviation is 4.5% for 5 determinations of amitraz in water and 3.2% for 5 determinations in soil. Received December 6, 2000. Revision March 1, 2001.  相似文献   

17.
 A new selective, sensitive, and simple kinetic method is developed for the determination of trace amounts of iodide. The method is based on the catalytic effect of iodide on the reaction of triflupromazine (TFP) with H2O2. The reaction is followed spectrophotometrically by tracing the oxidation product at 498 nm within 1 min after addition of H2O2. The optimum reaction conditions are TFP (0.4 × 10−3 M), H2SO4 (1.0M), H3PO4 (2.0M), and H2O2 (1.6M) at 30°C. Following this procedure, iodide can be determined with a linear calibration graph up to 4.5 ng ċ cm−3 and a detection limit of 0.04 ng ċ cm−3, based on the 3 Sb criterion. The method can also be applied to the determination of iodate and periodate ions. Determination of as little as 0.2, 1.0, 2.0, and 4.0 ng ċ cm−3 of I, IO3 -, or IO4 - in aqueous solutions gave an average recovery of 98% with relative standard deviations below 1.6% (n = 5). The method was applied to the determination of iodide in Nile river water and ground waters as well as in various food samples after alkaline ashing treatment. The method is compared with other catalytic spectrophotometric procedures for iodide determination.  相似文献   

18.
Newly developed, simple, low-cost and sensitive ion-selective electrodes have been proposed for determination of some antiepileptic drugs such as lamotrigine, felbamate, and primidone in their pharmaceutical preparations as well as in biological fluids. The electrodes are based on poly(vinyl chloride) membranes doped with drug–tetraphenyl borate (TPB) or drug–phosphotungstic acid (PT) ion-pair complexes as molecular recognition materials. The novel electrodes displayed rapid Nernstian responses with detection limits of approximately 10−7 M. Calibration graphs were linear over the ranges 5.2 × 10−7–1.0 × 10−3, 1.5 × 10−6–1.0 × 10−3, and 2.6 × 10−7–1.0 × 10−3 M for drug–TPB and 5.8 × 10−7–1.0 × 10−3, 1.8 × 10−7–1.0 × 10−3, and 6.6 × 10−7–1.0 × 10−3 M for drug–PT electrodes, respectively, with slopes ranging from 52.3 to 62.3 mV/decade. The membranes developed have potential stability for up to 1 month and proved to be highly selective for the drugs investigated over other ions and excipients. The results show that the selectivity of the ion-selective electrodes is influenced significantly by the plasticizer. The proposed electrodes were successfully applied in the determination of these drugs in pharmaceutical preparations in four batches of different expiry dates. Statistical Student’s t test and F test showed insignificant systematic error between the ion-selective electrode methods developed and a standard method. Comparison of the results obtained using the proposed electrodes with those found using a reference method showed that the ion-selective electrode technique is sensitive, reliable, and can be used with very good accuracy and high percentage recovery without pretreatment procedures of the samples to minimize interfering matrix effects. Figure Structure of lamotrigine, felbanate and primidone  相似文献   

19.
A rapid, highly sensitive and selective fluorogenic method for the determination of traces of nitrite is described. It is based on the reaction of weakly fluorescent 1,3,5,7-tetramethyl-8-(3,4-diaminophenyl)-difluoroboradiaza-s-indacence (DAMBO) and nitrite in acidic aqueous solution to give 1,3,5,7-tetramethyl-8-(5-benzotriazolyl)-difluoroboradiaza-s-indacene (DAMBO-T), which is highly fluorescent. The optimum reaction conditions and other analytical parameters are investigated to enhance the sensitivity of the method. The fluorescence enhancement at 507 nm is linearly related to the concentration of nitrite in the range of 6.0 × 10−9–5.0 × 10−7 mol L−1 with a correlation coefficient of R = 0.9995 (n = 10) and a detection limit of 1.0 × 10−10 mol L−1. The R.S.D. is 1.12% (n = 10). The method is applied to the determination of nitrite in human saliva samples with the recoveries of 96. 24–105.30%. Correspondence: Ke-Jing Huang, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China  相似文献   

20.
Copper (II) complex of 2,4-dimethyl-1,5,9,12-tetraazacyclopentadeca-1,4-diene, [Me2(15)dieneN4] was synthesized and used in the fabrication of Cu2+ – selective ISE membrane in PVC matrix. The membrane having Cu(II) macrocyclic complex as electroactive material along with sodium tetraphenyl borate (NaTPB) as anion discriminator. Dibutyl phthalate (DBP) as plasticizer in poly(vinyl chloride) (PVC) matrix was prepared for the determination of Cu2+. The best performance was observed by the membrane having Cu(II) complex–PVC–NaTPB–DBP with composition 1:5:1:3. The sensor worked well over a concentration range 1.12 × 10−6 M–1.0 × 10−1 M between pH 2.1–6.2 and a fast response time 10±2 s and a lifetime of 6 months. Their performance in partially non-aqueous medium was found satisfactory. Electrodes exhibited excellent selectivity for Cu2+ ion over other mono-, di-, trivalent cations. It can also be used as indicator electrode in the potentiometric titration of Cu2+ against EDTA as well as in the determination of Cu2+ in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号