首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A 580/70R38 tractor drive tire with an aspect ratio of 0.756 and a 650/75R32 tire with an aspect ratio of 0.804 were operated at two dynamic loads and two inflation pressures on a sandy loam and a clay loam with loose soil above a hardpan. Soil bulk density and cone index were measured just above the hardpan beneath the centerline and edge of the tires. The bulk densities were essentially equal for the two tires and cone indices were also essentially equal for the two tires. Soil bulk density and cone index increased with increasing dynamic load at constant inflation pressure, and with increasing inflation pressure at constant dynamic load. In comparisons of the centerline and edge locations, soil bulk density and cone index were significantly less beneath the edge than beneath the centerline of the tires. Soil compaction is not likely to be affected by the aspect ratio of radial-ply tractor drive tires when aspect ratios are between 0.75 and 0.80.  相似文献   

2.
In this study, the vertical soil reaction acting on a driven wheel was measured by strain gages bonded to the left rear axle of a 2WD tractor driven under steady-state condition on different soil surfaces, tractor operations, and combinations of static wheel load and tire inflation pressure. In addition, the measurements of radial and tangential stresses on the soil–tire interface were made simultaneously at lug’s face and leading side near the centerline of the left rear tire using spot pressure sensors. The experimental results indicate that the proposed method of vertical soil reaction measurement is capable of monitoring the real-time vertical wheel load of a moving vehicle and provides a tool for further studies on vehicle dynamics and dynamic wheel–soil interaction. Furthermore, the measured distributions of soil stresses under tractor tire could provide more real insight into the soil–wheel interactions.  相似文献   

3.
Four tire types (A, block-shape tread; B, rib-shape tread; C, low-lug tread; D, high-lug tread) used to harvest and transport sugarcane were compared regarding the compaction induced to the soil. Tires were tested at three inflation pressures (207, 276, 345 kPa) and six loads ranging from 20 to 60 kN/tire. Track impressions were traced, and 576 areas were measured to find equations relating inflation pressure, load, contact surface and pressure. Contact surface increased with increasing load and decreasing inflation pressure; however, the contact pressure presented no defined pattern of variation, with tire types A and B generating lower contact pressure. The vertical stresses under the tires were measured and simulated with sensors and software developed at the Colombian Sugarcane Research Center (Cenicaña). Sensors were placed at 10, 30, 50 and 70 cm depth. Tire types A and B registered vertical stresses below 250 kPa at the surface. These two tires were better options to reduce soil compaction. The equations characterizing the tires were introduced into a program to simulate the vertical stress. Simulated and measured stresses were adjusted in an 87–92% range. Results indicate a good correlation between the tire equations, the vertical stress simulation and the vertical stress measurement.  相似文献   

4.
Agricultural tire deformation in the 2D case by finite element methods   总被引:1,自引:0,他引:1  
The mechanical characteristics of the rubber tire and the interaction between a tire and a rigid surface were investigated by a two-dimensional (2D) finite element (FE) model. The FE model consists of a rigid rim and a rigid contact surface which interact with the elastic tire. Four distinct sets of elastic parameters are used to represent beads, sidewall, tread and lugs. Several sets of tire loads and inflation pressures were applied to the FE model as boundary conditions, together with various displacements and friction conditions. The deformation of the tire profile, the tire displacements in the vertical and lateral directions, the normal contact pressures, the frictional forces and the stress distribution of the tire components were investigated by the 2D FE model under the above boundary conditions. The calculated tire deflections were compared with the measured data. The results show a good fit between calculated and measured data, especially at high load and inflation pressure. The comparison shows that the FE analysis is suitable to predict aspects of the tire performance like its deflection and interactions with the contact surface. Compared with the experimental methods, the FE methods show many advantages in the prediction of tire deformation, contact pressure and stress distribution.  相似文献   

5.
In the present study, the effect of vertical load, tire inflation pressure and soil moisture content on power loss in tire under controlled soil bin conditions were investigated. Also a finite element model of tire-soil interaction in order to achieve a suitable model for predicting power loss in tire was created. Increasing the vertical load on the tire had a noteworthy impact on increasing the tire contact volume with the soil, reducing the percentage of slip, and increasing the rolling resistance; although, reducing the load on the tire had the opposite effect. At a constant inflation pressure, by increasing the vertical load on the tire, the amount of power loss due to the rolling resistance and the total power loss in the tire increased. Increase in soil moisture content increased the power loss caused by slip. Increasing the inflation pressure at a constant vertical load, also increasing the soil moisture content, led to an increase in the power loss caused by rolling resistance, and increase total power loss. The obtained error for estimating power loss of rolling resistance and total power loss was satisfactory and confirmed the acceptability of the model for power loss estimation.  相似文献   

6.
A method for estimating the three-dimensional (3D) footprint of a 16.9R38 pneumatic tyre was developed. The method was based on measured values of contact pressure at the soil–tyre interface and wheel contact length determined from the contact pressures and the depths and widths of ruts formed in the soil. The 3D footprint was investigated in an area of the field where the pressure sensors of the tyre passed in a soft clay soil. The tyre was instrumented with six miniature pressure sensors, three on the lug face and the remaining three on the under-tread region between two lugs. The instrumented tyre was run at a constant forward speed of 0.27 m/s and 23% slip on a soft soil, 0.48 MPa cone index, 25.6% d.b. moisture content for four wheel load and tyre pressure combination treatments. The 3D footprint assessment derived from soil–tyre interface stress used in this research is a unique methodology, which could precisely relate the trend profile of the 3D footprint to the measured rut depth. The tyre–soil interface contact pressure distributions results showed that as inflation pressure increased the soil strength increased significantly near the centre of the tyre as a compaction increase sensed with the cone penetrometer.  相似文献   

7.
Normal and tangential stress vectors were measured at the soil-tire interface of a pneumatic tractor tire on firm and soft soils. Stress magnitudes were determined with a transducer which was designed to measure both normal and tangential stresses. The orientation of the transducer was determined using a 3-dimensional, sonic digitizing system which was mounted inside the air cavity of the tire. Data are presented from tests conducted at zero input torque, zero net traction, and 0.15 net traction ratio which show the effects of inflation pressure, dynamic load, and soil conditions on the stress vectors.  相似文献   

8.
The main objective of the following presentation is to examine the possibility of predicting agricultural tire footprint parameters under different operational conditions. The experimental part of the research involved the operation of two agricultural transport tires on two soils, under variations of tire load, inflation pressures and soil moisture contents. Results obtained show that tire footprint parameters, such as contact area, length, width and sinkage, can be reliably predicted using multifactorial linear and total regressions, within the range of recommended tire loads, inflation pressures and soil moisture contents around the plastic limit.  相似文献   

9.
Tyre traffic over soil causes non-uniform ground pressures across the tyre width and along the soil–tyre contact area. The objective of this paper was to obtain in the topsoil the shape, magnitudes, distribution and transmission in depth of the ground pressures from a finite element model of soil compaction. The influence of tyre inflation pressure, tyre load and soil water content over the pressures propagation in the soil was analysed. The model shows how to low inflation pressure the tyre carcass supports most of the total load and the biggest peak pressures are distributed in the tyre axes when it traffics over firm soil. For high inflation pressure the incremented stiff causes that pressure is distributed with parabolic shape. In wet soil the inflation pressure does not influence on the ground pressure distribution, this depends only on the tyre load. The inflation pressure and tyre load changed the shape of the vertical pressures distribution on the surface of a hard dry soil, but these variables did not affect the distribution of vertical stresses in a soft wet soil or below a depth of 0.15 m.  相似文献   

10.
The contact pressure, contact area, contact width, contact length and vertical deflection of a pneumatic tire on a rigid surface depend on tire size, load and inflation pressure and can be derived by means of mathematical expressions. These expressions have been widely utilized and checked in practice for different tires.  相似文献   

11.
The objective of this study was to evaluate the effects of agricultural tire characteristics on variations of wheel load and vibrations transmitted from the ground to the tractor rear axle. The experiments were conducted on an asphalt road and a sandy loam field using a two-wheel-drive self-propelled farm tractor at different combinations of tractor forward speeds of approximately 0.6, 1.6 and 2.6 m/s, and tire inflation pressures of 330 and 80 kPa. During experiments, the vertical wheel load of the left and right rear wheels, and the roll, bounce and pitch accelerations of the rear axle center were measured using strain-gage-based transducers and a triaxial accelerometer. The wavelet and Fourier analyses were applied to measured data in order to investigate the effects of self-excitations due to non-uniformity and lugs of tires on the wheel-load fluctuation and rear axle vibrations. Values for the root-mean-square (RMS) wheel loads and accelerations were not strictly proportional and inversely proportional to the forward speed and tire pressure respectively. The time histories and frequency compositions of synthesized data have shown that tire non-uniformity and tire lugs significantly excited the wheel load and accelerations at their natural frequencies and harmonics. These effects were strongly affected by the forward speed, tire pressure and ground deformation.  相似文献   

12.
Dimensional variations of pneumatic tires influence off-road locomotion and more particularly their aptitude for the transmission of high propulsive torques to the tire-soil contact area.Height variation of the tire when load increases is linear and allows a classification of the casings by means of the angular coefficients for the straight lines expression this relationship.Variation in the level where the enlarging of the torus is maximum is directly connected with the applied load and inversely proportional to the inflation pressure. Ply rating and inflation pressure define a stiffness coefficient for a tire, while the ratio of height to width under load specifies a deformation coefficient, a squash rate and a flattening rate. These three parameters characterize the elasticity of the tire and so are connected to the effective tire-soil contact areas.Compressive effects of the vertical stress as well as the transmitted torques are in relation with tire deformability. The study points to the need for better specification of the parameters for the choice, or for the definition of the desired characteristics for manufacturing, of tires.Experiments already done on superficial compaction effects concluded with a new type of cross section for the tire called the camel shoe.  相似文献   

13.
Bigger tyres with lower inflation pressure at equivalent wheel loads are expected to reduce the stresses transmitted to the soil. We measured the contact area and the vertical stress distribution near the soil-tyre interface for five agricultural implement tyres at 30 and 60 kN wheel load and rated inflation pressures. Seventeen stress transducers were installed at 0.1 m depth in a sandy soil at a water content slightly lower than field capacity and covered with loose soil. The recently developed model FRIDA was successfully fitted to the experimental stress data across the footprint. The contact area reflected the size of the tyres. The small tyres had identical contact area at the two loads, while it increased with load for the two biggest tyres. The small tyres presented uneven stress distributions with high peak stresses. Across the tests, the tyre inflation pressure described well the measured peak stress as well as the modelled maximum stress. The latter seems to be appropriate in evaluating vehicle trafficability. We found significant differences among tyres for the slope of a linear regression between the mean ground pressure and the inflation pressure, while the tyres displayed the same interception on the mean ground pressure axis. Our results therefore suggest that the slope of this relation is the most sensitive expression of tyres’ ability to deflect and transfer stresses to the soil. The two small tyres performed poorer in this respect than the larger tyres. Tests were limited to one soil strength, with future research directed toward a broader spectrum of soil strengths.  相似文献   

14.
The sidewall is one of the regions where service failures occur in a pneumatic tire. Knowledge of the stresses or strains developed in the sidewall under varying service conditions is required if such pneumatic-tire failures are to be avoided. This paper describes an experimental investigation into the effect of inflation pressure, vehicle load and camber angle on the sidewall-surface strains in a radial tire. Photoelastic coating and a specially designed strain-gaging technique were used. For pure-inflation pressure, the magnitude of the measured shear strains in the sidewall is directly related to the inflation pressure. The maximum sidewall shear strains in pure inflation are located in the lower sidewall (18 mm from bead), irrespective of the magnitude of the inflation pressure. The mendional sidewall strain is predominant in the inflated but otherwise unloaded tire. The meridional strain is proportional to the square root of the inflation pressure. The maximum mendional strain is located in the mid-sidewall region. For a constant vehicle loading, there is a transition inflation pressure below or above which the circumterential shoulder strain increases sharply. This observation highlights the importance of maintaining satistactory inflation pressure in passenger-car tires as an under-inflated tire will induce severe strain development at the shoulder. In addition to the vehicle load, the introduction of camber angle produces localized change in the meridional and circumterential strains within the contact zone. The increase of camber angle up to 10 deg causes continuous increase in the meridional strain in the lower sidewall but decrease in the upper sidewall. The mid-sidewall meridional strains remain practically unchanged. The circumferential strains along the load line are, in general, lower due to the increase in camber angle.  相似文献   

15.
Theoretical and applied research has shown that the pressure at a point in the subsurface soil is a function of both the surface unit pressure and the extent of the area over which it is applied (total load). Thirty years ago, most of the soil compaction from vehicle traffic was in the plow layer and was removed by normal cultural practices. As equipment has increased in size and mass, machine designers have increased tire sizes to keep the soil surface unit pressure relatively constant. However, the increase in total axle loads is believed to have caused an increase in compaction at any given depth in the soil profile, resulting in significant compaction in the subsoil.Two tires of different sizes, a standard agricultural tire and a flotation tire were used to support equal loads. Soil pressures were measured at three depths in the soil profile directly beneath each of the tires. Two soils were used and each was prepared first in a uniform density profile, and then they were prepared with a simulated traffic pan (layer of higher density) at a depth of approximately 30 cm.Results showed that the presence of a traffic pan in the soil profile caused higher soil pressures above the pan and lower pressures below it than was the case for a uniform soil profile. The soil contact surface of the flotation tire was approximately 22% greater than the agricultural tire. The greater contact surface did reduce soil pressures at the soil surface, of course, but the total axle load was still the dominant factor in the 18–50 cm-depth range used in this study.  相似文献   

16.
Research was conducted to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop models to assess compaction in agricultural soils. Experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely: clay soil (CS), silty clay loam soil (SCLS), and silty loam soil (SLS). A dimensional analysis technique was used to develop the compaction models. The axle load and the number of tire passes proved to be the most dominant factors which influenced compaction. Up to 13% increase in bulk density and cone index were observed when working at 3 kN axle load in a single pass using a 8.0–16 tire. Most of the compaction occurred during the first three passes of the tire. It was also found that the aspect ratio, tire inflation pressure and soil moisture content have significant effect on soil compaction. The initial cone index did not show significant effect. The compaction models provided good predictions even when tested with actual field data from previous studies. Thus, using the models, a decision support system could be developed which may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific compaction problems.  相似文献   

17.
The tractive performance of an 18.4R38 radial-ply tractor tire with increased flexibility in the tread area was compared to that of a standard tread design. Normal soil-tire interface stresses were measured at four locations on the lug surfaces of both tires operating on Decatur clay loam and Norfolk sandy loam soils. There was a tendency for the increased flexibility in the tread area to provide a higher net traction ratio at the same tractive efficiency as the standard tread design, especially on Decatur clay loam soil. The more flexible tread design reduced the magnitude of peak normal contact stresses across the tire width, which may have implications for reducing soil compaction without compromising tractive performance. The more flexible tire reduced the average normal contact stress by approximately 15% in the sandy loam soil and 23% in the clay loam soil for the range of operating conditions investigated.  相似文献   

18.
轮胎磨损颗粒物形貌及产生机理的实验研究   总被引:1,自引:0,他引:1  
采用自行设计的磨损试验机采集轮胎-路面摩擦副产生的轮胎磨损颗粒物,通过光学显微镜和扫描电子显微镜(SEM)分析和讨论了不同负载、速度和胎压工况影响下磨损颗粒物的表面形貌、粒度及磨损胎面形貌,建立了磨损颗粒物与胎面磨损形态的关系.结果表明:轮胎磨损颗粒物的粒度和数量类似正态分布,粒度主要集中在100~300μm.轮胎磨损颗粒物的主要产生机理是胎面疲劳剥落,形式主要为片状剥落和卷曲磨损共存,卷曲磨损会导致更多的磨损颗粒物脱离.载荷可使两种磨损形式的主导地位发生转变.接触界面应力提高会使团絮状胎面磨损颗粒物增多,速度增大会明显减小磨损颗粒物粒度.对小于10μm颗粒物来说,工况对其数量影响的主次顺序依次为速度、胎压和载荷.本研究可以为减少因轮胎磨损而导致的磨屑次生危害提供可供借鉴的理论指导.  相似文献   

19.
Every element of a pulling traction device (e.g. track shoe with grouser or tire section with lug) exhibits increasing rearward displacement during its engagement with soft ground. Compression–Sliding (CS) approach states in agreement with experimental evidence that on common soft ground this displacement starts due to longitudinal soil compression by the grouser or lug, which steadily increases up to the transitional displacement when the soil segment beneath a driving element fails in shear. Further displacement of a driving element is marked by forced slide of a sheared off soil block, which may eventually collapse. There was justified reasoning that the transitional displacement depends not only on the grouser (lug) contact pressure but also on the area and load of the respective traction element. The presented article reports on experiments designed to test this premise. The measurements applying the novel double plate (DP) meter technique were carried out in a laboratory soil bin containing loam charge of uniform bulk density and moisture content. Three sizes (proportions 1:2:4) and two mean vertical contact pressures (ratio1:2) of DP meter main plate were tested. The analysis of performed experiments confirmed the existence of dimensional and loading relationship “main plate – transitional displacement”, which bears upon the evaluation of thrust–slip relationship of any traction device by the CS approach or by any other method observing the existence of displacement.  相似文献   

20.
Increased traffic safety levels are of highest importance, especially when driving on icy roads. Experimental investigations for a detailed understanding of pneumatic tire performance on ice are expensive and time consuming. The changing ambient and ice conditions make it challenging to maintain repeatable test conditions during a test program. This paper presents a tire–ice contact model (TIM) to simulate the friction levels between the tire and the ice surface. The main goal of this model is to predict the tire–ice friction based on the temperature rise in the contact patch. The temperature rise prediction in the contact patch is based on the pressure distribution in the contact patch and on the thermal properties of the tread compound and of the ice surface. The contact patch is next classified into wet and dry regions based on the ice surface temperature and temperature rise simulations. The principle of thermal balance is then applied to compute the friction level in the contact patch. The tire–ice contact model is validated by comparing friction levels from simulations and experimental findings. Friction levels at different conditions of load, inflation pressure, and ice temperatures have been simulated using the tire–ice contact model and compared to experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号