首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and properties of a novel class of gemini pyridinium surfactants   总被引:1,自引:0,他引:1  
A novel class of gemini pyridinium surfactants with a four-methylene spacer group was synthesized, and their surface-active properties and interactions with polyacrylamide (PAM) were evaluated by surface tension, fluorescence, and viscosity measurements. A comparison between the gemini pyridinium surfactants and their corresponding monomers was also made. The cmc's of gemini pyridinium surfactants are much lower than those of the corresponding monomeric surfactants. The C20 value is about one order of magnitude lower than that of corresponding monomers, and the longer the hydrophobic chains of the surfactants, the lower the cmc value. Surface tension measurements of the surfactant-PAM mixed systems show that the critical aggregation concentration (cac) value is much lower than the cmc value of the surfactant system alone. Viscosity measurements of the surfactant-PAM mixed systems show that the relative viscosity of the surfactant-PAM system decreased with increasing concentration of surfactant. Additionally, fluorescence measurements of the surfactant-PAM mixed system suggest the formation of surfactant-polymer aggregates, and the gemini pyridinium surfactant with longer hydrophobic chains have a stronger interaction with PAM, owing to the stronger hydrophobic interaction.  相似文献   

2.
Conductivity (kappa), turbidity (tau), and fluorescence (I1/I3) studies of hexadecyltrimethylammonium bromide (HTAB), hexadecylpyridinium bromide (HPyBr), and hexadecylpyridinium chloride (HPyCl) in aqueous poly(amido amine) (PAMAM) dendrimers of generations 0 to 2.5 G have been carried out. The complexation of surfactant monomers with the PAMAM surface groups is demonstrated by the critical aggregation concentration (cac), which is two to three orders of magnitude less than the micellization of cationic surfactants in aqueous PAMAM and denoted by critical micelle concentration (cmc*). In the presence of aqueous amine-terminated PAMAM, the cmc* value for each surfactant was much lower than the cmc in pure water, while they remain close to each other in the presence of aqueous ester-terminated PAMAM for each surfactant. The fluorescence studies demonstrated that both amine- and ester-terminated PAMAM interact with the cationic surfactants, though the mode of interaction varied due to the different nature of surface groups.  相似文献   

3.
The interaction between the achiral sulfonated porphyrin 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin, H 2TPPS 4 (4-), and two chiral cationic surfactants has been studied by optical absorption, fluorescence, and circular dichroism (CD) spectroscopies. At surfactant concentrations above the critical micellar concentration (cmc) the porphyrin is included in the micellar aggregates, but it is CD silent. Below the cmc at a definite porphyrin/surfactant stoichiometry the formation of heteroaggregates with transfer of chirality to the porphyrin chromophore occurs. The preferred surfactant/porphyrin stoichiometry is 3:1, which suggests a structure driven by electrostatic and hydrophobic interactions between porphyrin and surfactant and dipolar and ionic interactions with the water solution. At surfactant concentrations above the cmc, depending on the protocol of preparation of the samples, the formation of the two kinds of aggregates can be observed, reversible for the simple surfactant micelles incorporating the porphyrin, but irreversible for the heteroaggregates.  相似文献   

4.
The interaction between poly(ethylene oxide) or poly(vinylpyrrolidone) and cesium and tetraalkylammonium (tetramethyl to tetrabutyl ammonium) dodecylsulfate has been investigated by means of electrical conductivity measurements to determine the critical aggregation concentration (cac) of the surfactants in the presence of polymer. The cac values were compared to the values of the critical micellization concentration (cmc) of the surfactants in the absence of polymer. The value of the cac/cmc ratio increased with the radius of the counterion in the sequence: Na(+)相似文献   

5.
The interactions between DNA and a number of different cationic surfactants, differing in headgroup polarity, were investigated by electric conductivity measurements and fluorescence microscopy. It was observed that, the critical association concentration (cac), characterizing the onset of surfactant binding to DNA, does not vary significantly with the architecture of the headgroup. However, comparing with the critical micelle concentration (cmc) in the absence of DNA, it can be inferred that the micelles of a surfactant with a simple quaternary ammonium headgroup are much more stabilized by the presence of DNA than those of surfactants with hydroxylated head-groups. In line with previous studies of polymer-surfactant association, the cac does not vary significantly with either the DNA concentration or its chain length. On the other hand, a novel observation is that the cac is much lower when DNA is denaturated and in the single-stranded conformation, than for the double-helix DNA. This is contrary to expectation for a simple electrostatically driven association. Thus previous studies of polyelectrolyte-surfactant systems have shown that the cac decreases strongly with increasing linear charge density of the polyion. Since double-stranded DNA (dsDNA) has twice as large linear charge density as single-stranded DNA (ssDNA), the stronger binding in the latter case indicates an important role of nonelectrostatic effects. Both a higher flexibility of ssDNA and a higher hydrophobicity due to the exposed bases are found to play a role, with the hydrophobic interaction argued to be more important. The significance of hydrophobic DNA-surfactant interaction is in line with other observations. The significance of nonelectrostatic effects is also indicated in significant differences in cac between different surfactants for ssDNA but not for dsDNA. For lower concentrations of DNA, the conductivity measurements presented an "anomalous" feature, i.e., a second inflection point for surfactant concentrations below the cac; this feature was not displayed at higher concentrations of DNA. The effect is attributed to the presence of a mixture of ss- and dsDNA molecules. Thus the stability of dsDNA is dependent on a certain ion atmosphere; at lower ion concentrations the electrostatic repulsions between the DNA strands become too strong compared to the attractive interactions, and there is a dissociation into the individual strands. Fluorescence microscopy studies, performed at much lower DNA concentrations, demonstrated a transformation of dsDNA from an extended "coil" state to a compact "globule" condition, with a broad concentration region of coexistence of coils and globules. The onset of DNA compaction coincides roughly with the cac values obtained from conductivity measurements. This is in line with the observed independence of cac on the DNA concentration, together with the assumption that the onset of binding corresponds to an initiation of DNA compaction. No major changes in either the onset of compaction or complete compaction were observed as the surfactant headgroup was made more polar.  相似文献   

6.
The interactions between oppositely charged surfactant/polymer mixtures have been studied using conductivity and turbidity measurements. The dependence of aggregation phenomenon on the chain length and head group modifications of conventional cationic surfactants, i.e., hexadecyl- (HTAB), tetradecyl- (TTAB), and dodecyltrimethylammonium bromides (DTAB) and dimeric cationic surfactants, i.e., decyl- (DeDGB) and dodecyldimethylgemini bromides (DDGB), is investigated. It was observed that cationic surfactants induce cooperative binding with anionic polyelectrolytes at critical aggregation concentration (cac). The cac values are considerably lower than the critical micelle concentration (cmc) values for the same surfactant. After the complete complexation, free micelles are formed at the apparent critical micelle concentration (acmc), which is slightly higher in aqueous polyelectrolyte than in pure water. Among the conventional and dimeric cationic surfactants, DTAB and DeDGB, respectively, have been found to have least interactions with oppositely charged polyelectrolytes.  相似文献   

7.
The interactions between triblock copolymers of poly(ethylene oxide) and poly(propylene oxide), P103 and F108, EO(n)PO(m)EO(n), m = 56 and n = 17 and 132, respectively, and gemini surfactants (oligooxa)-alkanediyl-alpha,omega-bis(dimethyldodecylammonium bromide) (12-EO(x)-12), x = 0-3, have been studied in aqueous solution using isothermal titration calorimetry. The thermograms of F108 as a function of surfactant concentration show one broad peak at polymer concentrations, Cp, < or =0.50 wt %, below the critical micelle concentration (cmc) of the copolymer at 25 degrees C. It is attributed to interactions between the surfactant and the triblock copolymer monomer. The critical aggregation concentration (cac) remains constant while deltaHmax2 and the saturation concentration, C2, increase with increasing copolymer concentration. Analysis of the cac data offers semiquantitative support that the degree of ionization of the surfactant aggregates bound to polymers is likely to be larger than that at the surfactant cmc. In P103 solutions at Cp > or = 0.05 wt %, two peaks appear in the thermograms and they are attributed to the interactions between the gemini surfactant and the micelle or monomeric forms of the copolymer. An origin-based nonlinear fitting program was employed to deconvolute the two peaks and to obtain estimates of peak properties. An estimate of the fraction of copolymer in aggregated form was also obtained. The enthalpy change due to interactions between the surfactants and P103 aggregates is very large compared to values obtained for traditional surfactants. This suggests that extensive reorganization of copolymer aggregates and surrounding solvent occurs during the interaction. Dehydration of the copolymers by the surfactant may also play an important step in the interaction. The endothermic enthalpy change reflecting interactions between the surfactant and polymer decreases more rapidly as the length and hydrophilic character of the spacer increases, suggesting that more favorable interactions occur with the P103 monomers having shorter PEO segments.  相似文献   

8.
The interactions between PSS-co-BVE copolymers and ionic surfactants (anionic and cationic) in aqueous solution have been investigated using pyrene as a photophysical probe. Static and dynamic fluorescence determinations have been used to obtain information about the microenvironments formed between both species. Micropolarity studies using the I1/I3 ratio of the vibronic bands of pyrene and the behavior of the I(E)/I(M) ratio between the monomer and excimer emissions show the formation of hydrophobic domains. The interactions between the polyelectrolytes and the oppositely charged surfactants lead to the formation of induced premicelles at surfactant concentrations lower than the cmc of the surfactants. This aggregation process is assumed to be due to electrostatic attraction. At the same concentration, the excimer-to-monomer emission ratio shows its first peak. At higher surfactant concentrations, near the cmc, micelles with the same properties as those found in pure aqueous solution are formed. On the other side, systems containing an anionic surfactant do not show this behavior at low concentrations. There is no apparent dependence of the cac on the composition of the polymer, reinforcing the assumption that the electrostatic interactions induce the formation of the premicelles. The values of the cac's follow the same trend as for the cmc's, DTAC>DTAB>CTAC. The polarity of the induced premicelles, as measured by the I1/I3 ratio, also indicates that the microdomains formed by the longer chain surfactants are more hydrophobic than those of the shorter chain surfactants, as also happens with real micelles.  相似文献   

9.
The interactions of conventional cationic, i.e. dodecyl-(DTAB), tetradecyl-(TTAB), and hexadecyltrimethylammonium bromides (HTAB), and dimeric cationic surfactants, i.e. dimethylene bis decyl-(10-2-10), and dodecyldimethylammonium bromides (12-2-12) with anionic polyelectrolytes, were studied by fluorescence measurements. The variation of I1/I3 ratio of the fluorescence of pyrene in aqueous solutions of polyelectrolytes was measured as a function of surfactant concentration. A three-step aggregation process involving the critical aggregation concentration (cac) and critical micelle concentration (cmc) was observed in each case. The cationic surfactants with lower hydrophobicity demonstrated higher degree of binding and vice versa.  相似文献   

10.
The interaction has been studied in aqueous solutions between a negatively charged conjugated polyelectrolyte poly{1,4-phenylene-[9,9-bis(4-phenoxybutylsulfonate)]fluorene-2,7-diyl} copolymer (PBS-PFP) and several cationic tetraalkylammonium surfactants with different structures (alkyl chain length, counterion, or double alkyl chain), with tetramethylammonium cations and with the anionic surfactant sodium dodecyl sulfate (SDS) by electronic absorption and emission spectroscopy and by conductivity measurements. The results are compared with those previously obtained on the interaction of the same polymer with the nonionic surfactant C12E5. The nature of the electrostatic or hydrophobic polymer-surfactant interactions leads to very different behavior. The polymer induces the aggregation with the cationic surfactants at concentrations well below the critical micelle concentration, while this is inhibited with the anionic SDS, as demonstrated from conductivity measurements. The interaction with cationic surfactants only shows a small dependence on alkyl chain length or counterion and is suggested to be dominated by electrostatic interactions. In contrast to previous studies with the nonionic C12E5, both the cationic and the anionic surfactants quench the PBS-PFP emission intensity, leading also to a decrease in the polymer emission lifetime. However, the interaction with these cationic surfactants leads to the appearance of a new emission band (approximately 525 nm), which may be due to energy hopping to defect sites due to the increase of PBS-PFP interchain interaction favored by charge neutralization of the anionic polymer by cationic surfactant and by hydrophobic interactions involving the surfactant alkyl chains, since the same green band is not observed by adding either tetramethylammonium hydroxide or chloride. This effect suggests that the cationic surfactants are changing the nature of PBS-PFP aggregates. The nature of the polymer and surfactant interactions can, thus, be used to control the spectroscopic and conductivity properties of the polymer, which may have implications in its applications.  相似文献   

11.
The interactions of cationic gemini surfactants, 1,2-bis(alkyldimethylammonio)ethane dibromide (m-2-m: m is hydrocarbon chain length, m = 10 and 12), and an anionic polymer, sodium poly(styrene sulfonate) (PSS), have been characterized by several techniques such as tensiometry, fluorescence spectroscopy, and dynamic light scattering. The surface tension of gemini surfactant/PSS mixed systems decreases with surfactant concentration, reaching break points, which are taken as critical aggregation concentrations (cac). The surface tension at the cac of mixtures is higher than that of single surfactants, and it is found that at concentrations above the cac, the surfactant molecules are associated with the polymer in the bulk. The 12-2-12/PSS mixed system shows higher surface activity than both 10-2-10/PSS and the monomeric surfactant of dodecyltrimethylammonium bromide/PSS systems. Fluorescence measurements of these mixed systems suggest the formation of a complex with a highly hydrophobic environment in the bulk of the solution. Additionally, dynamic light scattering measurements show that the hydrodynamic diameter of the 12-2-12/PSS mixed system is smaller than that of PSS only at low concentration, indicating interactions between surfactant and polymer. These result from the electrostatic attraction between ammonium and sulfate headgroups as well as the hydrophobic interaction between their hydrocarbon chains.  相似文献   

12.
The interactions between oppositely charged surfactant-polymer systems have been studied using surface tension and conductivity measurements and the dependence of aggregation phenomenon over the polyelectrolyte concentration and chain length of cationic ATAB surfactants, cetyltrimethyl ammonium bromide (CTAB), tetradecyltrimethyl ammonium bromide (TTAB), and dodecyltrimethyl ammonium bromide (DTAB) have been investigated. It was observed that cationic surfactants induce cooperative binding with anionic polyelectrolyte at critical aggregation concentration (cac). The cac values of ATAB surfactants in the presence of anionic polyelectrolyte, sodium carboxy methyl cellulose (NaCMC), are considerably lower than their critical micelle concentration (cmc). After the complete complexation, free micelles are formed at the apparent critical micelle concentration (acmc), which is slightly higher in polyelectrolyte aqueous solution than in pure water. Among the cationic surfactants (i.e., CTAB, TTAB, and DTAB), DTAB was found to have least interaction with NaCMC. Surfactants with longer tail size strongly favor the interaction, indicating the dependence of aggregation phenomenon on the structure, morphology, and tail length of the surfactant.   相似文献   

13.
We report atomic force microscopy (AFM) measurements of the forces between borosilicate glass solids in aqueous mixtures of cationic and zwitterionic surfactants. These forces are used to determine the adsorption of the surfactant as a function of the separation between the interfaces (proximal adsorption) through the application of a Maxwell relation. In the absence of cationic surfactant, the zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS) undergoes little adsorption to glass at concentrations up to about 2/3 critical micelle concentration (cmc). In addition, DDAPS does not have much effect on the forces over the same concentration range. In contrast, the cationic surfactant dodecylpyridinium chloride (DPC) does adsorb to glass and does affect the force between glass surfaces at concentrations much lower than the cmc. In the presence of a small amount of DPC (0.05 mM = cmc/300), the net force between the glass surfaces is quite sensitive to the solution concentration of DDAPS. A model-independent thermodynamic argument is used to show that the surface excess of DDAPS depends on the separation between the glass interfaces when the cationic surfactant is present and that the surface excess of the cationic surfactant is more sensitive to interfacial separation in the presence of the zwitterionic surfactant. The change in adsorption of the zwitterionic surfactant is explained in terms of an intermolecular coupling between the long-range electrostatic force acting on the cationic surfactant and the short-range hydrophobic interaction between the alkyl chains on the cationic and zwitterionic surfactants. The adsorptions of cationic and zwitterionic surfactants in mixtures were measured independently and simultaneously by attenuated total internal reflection infrared spectroscopy (ATR-IR). The adsorption of the zwitterionic surfactant is enhanced by the presence of a small amount of cationic surfactant.  相似文献   

14.
The combined effect of salt (10 mmol L(-1)) and surfactants on the sorption of the fluorescent brightener 4,4'-distyrylbiphenyl sodium sulfonate (Tinopal CBS) onto modified cellulose fibers was studied. Sorption efficiencies with both cationic and anionic surfactants were evaluated. Emission spectroscopy was used for quantitative analysis since Tinopal has an intense fluorescence. The sorption efficiency of the brightener is greater for solutions containing a cationic surfactant (DTAC) below the critical micelle concentration (cmc), while for an anionic surfactant (SDS) above its cmc the efficiency is greater. The profile of the sorption isotherms were interpreted in terms of the evolution of surfactant aggregation at the fiber/solution interface. Salt influences the efficiency of the Tinopal sorption on the modified cellulose fibers either because it decreases the cmc of the surfactants or because the ions screen the surface charges of the fiber which decreases the electrostatic interaction among the charged headgroup of the surfactant and the charged fiber surface.  相似文献   

15.
利用座滴法研究了支链化阳离子表面活性剂十六烷基羟丙基氯化铵(C16GPC)和两性离子表面活性剂十六烷基羧酸甜菜碱(C16GPB)在聚四氟乙烯(PTFE)表面上的吸附机制和润湿性质, 考察了表面活性剂浓度对表面张力、接触角、粘附张力、固液界面张力和粘附功的影响趋势. 研究发现, 低浓度条件下, 表面活性剂疏水支链的多个亚甲基基团与PTFE表面发生相互作用, 分子以平躺的方式吸附到固体界面; 支链化表面活性剂形成胶束的阻碍较大, 浓度大于临界胶束浓度(cmc)时, C16GPC和C16GPB分子在固液界面上继续吸附, 与PTFE作用的亚甲基基团减少, 分子逐渐直立, 固液界面自由能(γsl)明显降低. 对于支链化的阳离子和甜菜碱分子, 接触角均在浓度高于cmc后大幅度降低.  相似文献   

16.
We synthesized and characterized a series of new polymers-hydrophobically modified cationic polysaccharides-based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-alkylammonium chloride groups randomly distributed along the polymer backbone. These polymers are good candidates for studying the hydrophobic effect on polymer/surfactant association. In previous papers we reported their interactions with oppositely charged surfactants. For further insight into the relative importance of the hydrophobic interaction in the association process now we studied the thermodynamics of the interaction of these hydrophobically modified polymers with surfactants of the same charge (DMRX/CnTAC) by isothermal titration calorimetry (ITC). In order to try to discriminate the solution behavior of these polymer/surfactant systems, we analyzed separately the interaction of unmodified dextran with ionic surfactants and the interactions between the corresponding cationic surfactants. The interaction enthalpies for DMRX/CnTAC systems were derived from a proposed thermodynamic model with equations that describe the polymer-surfactant interactions. The thermodynamic parameters for the DMRX/CnTAC aggregation process as well as surfactant micellization in the presence of the polymer were also calculated. From all the results we were able to ascertain the effect on the interactions of changing the alkyl chain length of the polyelectrolyte pendant groups or the surfactant. The importance of the polymer aggregation state on the mechanism of interaction was also addressed.  相似文献   

17.
多糖类大分子具有天然、无毒、使用安全和可再生及来源丰富等优点. 将多糖类大分子与表面活性剂复配使用, 不仅可利用各自的优势和特性, 而且能发挥二者的协同作用, 大大改善二者的性能. 由于两者之间存在诸如静电作用、疏水作用、偶极相互作用、氢键作用、空间位阻效应等, 水体系中表面活性剂在多糖分子链上的缔合得到调控, 并引起表面活性剂的临界聚集浓度(cac)、临界胶束浓度(cmc)、结合量, 以及体系的表面吸附、界面流变性等呈现各种变化. 本文简要总结了近年来多糖类大分子与表面活性剂复配体系研究方面取得的一些进展, 述及复配体系研究中所采用的方法与手段, 主要讨论复配体系的物理化学性质以及多糖类大分子与表面活性剂相互作用的机制.  相似文献   

18.
We investigated the interaction between an anionic polyelectrolyte (carboxymethylcellulose) and cationic surfactants (DTAB, TTAB, and CTAB) at the air/water interface, using surface tension, ellipsometry, and Brewster angle microscopy techniques. At low surfactant concentration, a synergistic phenomenon is observed due to the co-adsorption of polyelectrolyte/surfactant complexes at the interface, which decreases the surface tension. When the surfactant critical aggregation concentration (cac) is reached, the adsorption saturates and the thickness of the adsorbed monolayer remains constant until another characteristic surfactant concentration, C0, is reached, at which all the polymer charges are bound to surfactant in bulk. Above C0, the absorbed monolayer becomes much thicker, suggesting adsorption of bulk aggregates, which have become more hydrophobic due to charge neutralization.  相似文献   

19.
利用座滴法研究了两性离子表面活性剂支链十六烷基(聚氧乙烯)n醚羟丙基羧酸甜菜碱(n = 0, 3)和阳离子表面活性剂支链十六烷基(聚氧乙烯)n醚羟丙基季铵盐溶液在聚甲基丙烯酸甲酯(PMMA)表面上的润湿性质,考察了表面活性剂类型、结构及浓度对接触角的影响趋势。研究发现,表面活性剂浓度低于临界胶束浓度(cmc)时,分子通过氢键以平躺的方式吸附到PMMA界面,亲水基团靠近固体界面, PMMA表面被轻微疏水化;表面张力和粘附张力同时降低,导致此阶段接触角随浓度变化不大。浓度高于cmc时,表面活性剂通过疏水作用吸附,亲水基团在外, PMMA表面被明显亲水改性,接触角随浓度升高显著降低。由于具有相同的支链烷基,表面活性剂类型变化和聚氧乙烯基团的引入对接触角影响不大。  相似文献   

20.
The micellization of a novel family of nonionic surfactants poly(oxyethylene) glycol alkyl ethers has been studied by microcalorimetry. One of the surfactants has adamantane, and the other nonionic surfactants have a benzene ring in their hydrophobic chains, which moves from the terminal of the hydrophobic chain toward the headgroup. Moreover, the alkyl chain of the nonionic surfactants is straight or branched. Both the critical micelle concentration (cmc) and the thermodynamic parameters associated with the micelle formation have been obtained. The cmc decreases and the enthalpy of micelle formation (deltaH(mic)) becomes less positive gradually as the length of hydrophobic chain increases, whereas the values of cmc and deltaH(mic) tend to increase for the surfactants with a longer ethylene oxide chain. However, the deltaH(mic) value of the surfactant with seven carbon atoms in a hydrophobic chain is more positive than that of the surfactant with six carbon atoms in a hydrophobic chain. Comparing with the nonionic surfactant with a methylene hydrophobic chain, the surfactants with benzene rings and adamantane groups have larger cmc values and the cmc values increase with the size of the groups. Furthermore, moving the phenyl group from the terminal of the hydrophobic chain to the neighbor of the hydrophilic headgroup leads to the decreased cmc. Both the variation of hydrophobic interaction from the movement of phenyl group and pi-pi interaction among adjacent phenyl groups affect deltaH(mic) values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号