首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of anionic-rich and cationic-rich mixtures of CTAB (cetyltrimethylammonium bromide) and SDS (sodium dodecyl sulfate) were investigated with conductometry and surface tension measurements and by determining the surfactant NMR self-diffusion coefficients. The critical aggregate concentration (CAC), surface tension reduction effectiveness(gamma(CAC)), surface excess(Gamma(max)), and mean molecular surface area (A(min)) were determined from plots of the surface tension (gamma) as a function of the total surfactant concentration. The compositions of the adsorbed films (Z) and aggregates (chi) were estimated by using regular solution theory, and then the interaction parameters in the aggregates (beta) and the adsorbed film phases (beta(sigma)) were calculated. The results showed that the synergism between the surfactants enhances the formation of mixed aggregates and reduces the surface tension. Further, the nature and strength of the interaction between the surfactants in the mixtures were obtained by calculating the values of the following parameters: the interaction parameter, beta, the size parameter, rho, and the nonrandom mixing parameter, P*. These results indicate that in ionic surfactant mixtures the optimized packing parameter has the highest value and that the size parameter can be used to account for deviations from the predictions of regular solution theory. It was concluded that, for planar air/aqueous interfaces and aggregation systems, this nonideality increases as the temperature increases. This trend is attributed to the increased dehydration of the surfactant head groups that results from increases in temperature. Further, our conductometry measurements show that the counterion binding number of mixed micelles formed in mixtures with a high CTAB content is different to those with a high SDS content. This difference is due to either their different aggregation sizes or the different interactions between the head groups and the counterions.  相似文献   

2.
Binding of cationic gemini surfactants alkanediyl-a-ω-bis(dimethyldodecylammonium bromides) with variable polymethylene spacer length ranging from 2 to 12 methylene groups to DNA in NaBr solution is investigated utilizing the tensiometry method. A simple method is presented for calculating the number of surfactant molecules bound to DNA. The results are evaluated in terms of the gemini surfactant spacer length, showing that gemini molecules with either short spacers (2 methylene groups) or long spacers are most efficiently adsorbed to DNA. A weak adsorption to DNA was found for gemini molecules with a medium spacer length (6 methylene groups in the spacer). The binding properties of cationic gemini surfactants as a function of spacer length are consistent with the results obtained by other experimental methods (dynamic light scattering measurements, fluorescence spectroscopy), indicating identical adsorption behaviour of gemini molecules as a function of the spacer length.   相似文献   

3.
We develop an analytical molecular-thermodynamic model for the aggregation free energy of branching portions of wormlike ionic micelles in 1:1 salt solution. The junction of three cylindrical aggregates is represented by a combination of pieces of the torus and bilayer. A geometry-dependent analytical solution is obtained for the linearized Poisson-Boltzmann equation. This analytical solution is applicable to saddle-like structures and reduces to the solutions known previously for planar, cylindrical, and spherical aggregates. For micellar junctions, our new analytical solution is in excellent agreement with numerical results over the range of parameters typical of ionic surfactant systems with branching micelles. Our model correctly predicts the sequence of stable aggregate morphologies, including a narrow bicontinuous zone, in dependence of hydrocarbon tail length, head size, and solution salinity. For predicting properties of a spatial network of wormlike micelles, our aggregation free energy is used in the Zilman-Safran theory. Our predictions are compared with experimental data for branching micelles of ionic surfactants.  相似文献   

4.
Interaction of tetradecyltrimethylammonium bromide (TTAB), octylophenylpolyoxyethylene ether (TX-100), sodium dodecylsulfate (SDS), N,N′-ditetradecyl-N,N,N′,N′-tetramethyl-N,N′-butanediyl-diammonium dibromide (14,4,14) and N,N′-didodecyl-N,N,N′,N′-tetramethyl-N,N′-butanediyl-diammonium dibromide (12,4,12) with an anionic diazo dye, Congo Red, was investigated using conductometry, spectroscopy, tensiometry, and pulsed field gradient NMR (PFG-NMR). The formation of dye-surfactant ion pairs, their small mixed aggregates (below the critical micelle concentration (CMC) of these surfactants) and surfactant micelles were detected successfully. Above the CMC, the dye reverted to its monomeric state and solubilized in the micelles. Job's method was used to determine the stoichiometric ratio of dye and surfactant in ion pairs and revealed the formation of more hydrophile ion pairs for geminis compared to their conventional analogs. Quantitative results obtained from tensiometry indicated the existence of considerable synergism for cationic surfactants and antagonism for anionic SDS. In addition, the synergism observed for TX-100 revealed the effect of π-π stacking and hydrophobic forces on ion pair and mixed micelle formation. The increase of dye-surfactant interactions by increasing the electrical charge and chain length of cationic surfactants confirmed the importance of both electrostatic and hydrophobic forces in binary dye/surfactant systems. The hydrodynamic radii of the micelles were determined by self-diffusion coefficient measurements. The average size of the cationic and nonionic micelles increased in the presence of CR molecules.  相似文献   

5.
DNA compaction by alkyltrimethylammonium surfactants at hydrophobized silica surfaces and the effect of the counterion, as well as the hydrocarbon chain length, was investigated by in situ null-ellipsometry. In addition, DNA compaction in the presence of a gemini surfactant, hexyl-alpha,omega-bis(dodecyldimethylammonium bromide), was studied. The type of cationic amphiphile used was found not to have a pronounced effect on the mixed DNA-cationic surfactant adsorbed layer thickness, although the surface concentration excess for the mixed layers seemed to follow the same trend as that for DNA-free surfactant layers. Interestingly, it was also found that the stability of the mixed adsorbed layer largely depends on the cationic surfactant used.  相似文献   

6.
Summary The properties of a series of ionic ethoxylated surfactants of the typeR m (OC2H4) SO4Na andR m (OC2H4) TAB (m = 10, 12, 14 or 16 andx = 0, 1, 2 or 3) were studied. Surface areas obtained from surface tension measurements increased as the ethoxy group number increased whereas increasing the hydrocarbon chain length had little effect. The c.m.c.'s obtained from conductivity decreased with increase in hydrocarbon chain length and to a smaller extent as the ethoxy group number increased. Values ofG° showed the methylene group to be four fold as effective as the ethoxy group in promoting micellisation. As the temperature was varied between 5 and 60 °C all the surfactants exhibited a minimum c.m.c. value close to 25 °C which decreased as the surfactant became more hydrophobic and increased as the surfactant became more hydrophilic. Counterion binding from specific ion electrode measurements increased with increase in hydrocarbon chain length but decreased with increase in ethoxy group number. Counterion binding decreased with increase in temperature.
Zusammenfassung Die Eigenschaften einer Reihe ionischer äthoxylierter oberflächenaktiver Stoffe vom TypR m (OC2H4) SO4Na undR m (OC2H4) TAB (m = 10, 12, 14 oder 16 undx = 0, 1, 2 oder 3) wurden untersucht. Die bei der Messung der Oberflächenspannung ermittelten Werte verzeichneten eine Zunahme bei der Zunahme der Äthoxy-Gruppe, wohingegen die Verlängerung der Kohlenwasserstoffkette keine nennenswerten Auswirkungen zeigte. Die durch Leitfähigkeit erhaltenen c.m.c.'s verringerten sich bei der Verlängerung der Kohlenwasserstoffkette und, in etwas geringerem Maße, beim Anwachsen der Äthoxy-Gruppe. Meßwerte vonG° deuteten darauf hin, daß die Methylengruppe in der Steigerung der Micellisierung um das Vierfache wirksamer war als die Äthoxy-Gruppe. Zwischen 5° und 60° zeigten alle untersuchten oberflächenaktiven Stoffe ein Minimum im c.m.c.-Wert in der Nähe von 25°, das sich verringerte, wenn diese Stoffe hydrophober wurden, und zunahm, wenn sie hydrophiler wurden. Die Bindung von Gegenionen, die aus Messungen mit spezifischen Ionenelektroden gewonnen wurde, steigerte sich mit zunehmender Länge der Kohlenwasserstoffkette, aber ging zurück mit zunehmender Zahl der Äthoxy-Gruppen. Die Bindung von Gegenionen verringerte sich mit steigender Temperatur.


With 7 figures and 4 tables  相似文献   

7.
The interactions between DNA and a number of different cationic surfactants, differing in headgroup polarity, were investigated by electric conductivity measurements and fluorescence microscopy. It was observed that, the critical association concentration (cac), characterizing the onset of surfactant binding to DNA, does not vary significantly with the architecture of the headgroup. However, comparing with the critical micelle concentration (cmc) in the absence of DNA, it can be inferred that the micelles of a surfactant with a simple quaternary ammonium headgroup are much more stabilized by the presence of DNA than those of surfactants with hydroxylated head-groups. In line with previous studies of polymer-surfactant association, the cac does not vary significantly with either the DNA concentration or its chain length. On the other hand, a novel observation is that the cac is much lower when DNA is denaturated and in the single-stranded conformation, than for the double-helix DNA. This is contrary to expectation for a simple electrostatically driven association. Thus previous studies of polyelectrolyte-surfactant systems have shown that the cac decreases strongly with increasing linear charge density of the polyion. Since double-stranded DNA (dsDNA) has twice as large linear charge density as single-stranded DNA (ssDNA), the stronger binding in the latter case indicates an important role of nonelectrostatic effects. Both a higher flexibility of ssDNA and a higher hydrophobicity due to the exposed bases are found to play a role, with the hydrophobic interaction argued to be more important. The significance of hydrophobic DNA-surfactant interaction is in line with other observations. The significance of nonelectrostatic effects is also indicated in significant differences in cac between different surfactants for ssDNA but not for dsDNA. For lower concentrations of DNA, the conductivity measurements presented an "anomalous" feature, i.e., a second inflection point for surfactant concentrations below the cac; this feature was not displayed at higher concentrations of DNA. The effect is attributed to the presence of a mixture of ss- and dsDNA molecules. Thus the stability of dsDNA is dependent on a certain ion atmosphere; at lower ion concentrations the electrostatic repulsions between the DNA strands become too strong compared to the attractive interactions, and there is a dissociation into the individual strands. Fluorescence microscopy studies, performed at much lower DNA concentrations, demonstrated a transformation of dsDNA from an extended "coil" state to a compact "globule" condition, with a broad concentration region of coexistence of coils and globules. The onset of DNA compaction coincides roughly with the cac values obtained from conductivity measurements. This is in line with the observed independence of cac on the DNA concentration, together with the assumption that the onset of binding corresponds to an initiation of DNA compaction. No major changes in either the onset of compaction or complete compaction were observed as the surfactant headgroup was made more polar.  相似文献   

8.
The interactions of cationic surfactants with anionic dyes were studied by conductometric method. Benzyltrimethylammonium chloride (BTMACl), benzyltriethylammonium chloride (BTEACl) and benzyltributylammonium chloride (BTBACl) were used as cationic surfactants and indigo carmine (IC) and amaranth (Amr) were chosen as anionic dyes. The specific conductance of dye–surfactant mixtures was measured at 25, 35 and 45 °C. A decrease in measured specific conductance values of dye–surfactant mixture was caused by the formation of non-conducting or less-conducting dye–surfactant complex. The equilibrium constants, K1, the standard free energy changes, ΔG1°ΔG1°, the standard enthalpy changes, ΔH1°ΔH1° and the standard entropy changes, ΔS1°ΔS1° for the first association step of dye–surfactant complex formation were calculated by a theoretical model. The results showed that the equilibrium constants and the negative standard free energy change values for all systems decreased as temperature increased. Also these values decreased for all systems studied with increasing alkyl chains of surfactants due to the steric effect. When the equilibrium constant values, K1, for the first association step of IC–surfactant and Amr–surfactant systems with the same surfactant were compared, the values of K1 for IC–surfactant system were higher than that of Amr–surfactant system.  相似文献   

9.
The compaction and aggregation of DNA induced by cationic surfactants was studied by dynamic light scattering (DLS). Furthermore, the effect on surfactant-compacted DNA of the addition of nonionic amphiphiles and salt was studied. When using sufficiently low amounts of DNA and cetyltrimethylammonium bromide (CTAB), compacted DNA molecules could be monitored by the appearance of a band characterized by lower hydrodynamic radius and by the decrease in the intensity of the peak corresponding to extended DNA molecules. Notably, we observed a region where compacted molecules coexist with extended ones; these two populations were found to be stable with time. For higher concentrations of CTAB, only compacted molecules were observed and the size of the particles increased with time indicating aggregation. The number of globules present in the coexistence region increased linearly with the surfactant concentrations, as given by the area of the band corresponding to this population, which indicates a double-cooperativity of the binding. The DLS experiments were in good agreement with previous fluorescence microscopy studies, with certain advantages over this technique since there is no need to add fluorescence dyes and antioxidants. Furthermore, it allows the study of molecules which are too small to be visualized by fluorescence microscopy.  相似文献   

10.
The simplified form of an integral adsorption isotherm based on Butler's equation was applied to describe surface behavior of a series of anionic (sodium alkylsulfonates) and cationic (alkylpyridinium halides) surfactants. This theory allows for the calculation of the free energy of adsorption (Delta G jk) value corresponding to the ability of a particular surfactant to undergo adsorption. The obtained results indicate that the value of Delta G jk depends linearly on the length of the hydrocarbon chain as well as on the kind and concentration of the added inorganic electrolyte. Moreover, it has been found that in the case of surfactants, which have the same length of the alkyl chain and adsorb from solutions containing the same inorganic electrolyte, the charge of hydrophilic group has insignificant influence on the value of Delta G jk.  相似文献   

11.
We have studied theoretically the compressibility modulus B of DNA and complexation adsorption isotherms of DNA and lipids, as a function of DNA spacing d(DNA) and NaCl electrolyte concentration, respectively, in isoelectric states of lamellar DNA/cationic lipid (CL) self-assemblies. The electrostatic free energy derived from the Poisson-Boltzmann theory predicts partial agreement with measured B values for interhelical separations d(DNA)>33 A when use is made of a fit of hydration repulsion from bulk DNA hexagonal phases in solution. For lower interchain separations the prediction worsens due to the hydration interaction that overcomes the electrostatic contribution. An exact match of the system's counterion electrochemical potentials and the coions of salt in aqueous phase leads to the electrostatic part of the free energy that renders isotherms of d(DNA) versus ionic strength in qualitative consistency with general trends of available experimental data of CL-DNA complexes.  相似文献   

12.
The interaction between an anionic dye C.I. Reactive Orange 16 (RO16) and a cationic surfactant dodecylpyridinium chloride (DPC) in mixtures of DPC and nonionic surfactants poly(oxyethylene)ethers (C(m)POE(n); m = 12, 16 and 18, n = 4, 10 and 23) are investigated spectrophotometrically in a certain micellar concentration range. The spectrophotometric measurements of dye-surfactant systems are carried out as function of mole fraction of surfactant at four different temperatures. For this reason, a typical system was occurred at 1.0 x 10(-2) mol l(-1) for surfactants and at 1.0 x 10(-4) mol l(-1) for dye concentrations. The formation of DPC-RO16 complex in the C(m)POE(n) solutions of different mole fractions in its micellar concentration range have been determined and compared to those obtained in the binary mixtures. From the spectrophotometric measurements has been observed that the addition of nonionic surfactant in to the mixture of DPC-RO16, causes a significant increase of the value of absorbance. This increase explains that the stability of DPC-RO16 complex is reduced in the presence of nonionic surfactant micelles. It can be seen from results; in mixed surfactant solutions, there are DPC-C(m)POE(n) and RO16-C(m)POE(n) interactions in addition to DPC-RO16 interaction. Since the solubilizaton of the DPC-RO16 complex has been appeared in the C(m)POE(n) solution, our results support the conclusion that adding C(m)POE(n) influences the hydrophobic-hydrophilic balance of the studied complex. Furthermore effect of the alkyl chain length and the number of poly(oxyethylene) in nonionic surfactant on values of absorbance have been investigated.  相似文献   

13.
DNA microarrays have been used as powerful tools in genomics studies and single nucleotide polymorphisms analysis. However, the fluorescence detection used in most conventional DNA microarrays is still limited by its sensitivity. The aim of this study is to use a cationic surfactant, cetyl trimethylammonium bromide (CTAB), to enhance the fluorescence intensity of 6-carboxy-fluorescene (FAM)-labeled DNA probes immobilized on a DNA microarray. We show that in the presence of CTAB the immobilized FAM-labeled DNA probes is 11-fold brighter than that without exposure to CTAB. Similarly, when we hybridize FAM-labeled DNA targets to a DNA microarray and treat the surface with CTAB solution, the fluorescence intensity shows a 26-fold increase for perfect-match DNA targets. More importantly, the contrast between perfect-match and 1-mismatch DNA is also increased from 1.3-fold to 15-fold. This method offers a simple and efficient technique to enhance the detection limit of DNA microarrays.  相似文献   

14.
The interactions of bovine serum albumin (BSA) with cationic gemini surfactants alkanediyl-alpha,omega-bis(dodecyldimethylammonium bromide) [C12H25(CH3)2N(CH2)(S)N(CH3)2C12H25]Br2 (designated as C12C(S)C12Br2, S = 3, 6, and 12) and single-chain surfactant dodecyltrimethylammonium bromide (DTAB) have been studied with isothermal titration microcalorimetry, turbidity, fluorescence spectroscopy, and circular dichroism at pH 7.0. Comparing with DTAB, C12C(S)C12Br2 have much stronger binding ability with BSA to induce the denaturation of BSA at very low molar ratio of C12C(S)C12Br2/BSA, and C12C(S)C12Br2 have a much stronger tendency to form insoluble complexes with BSA. The binding of C12C(S)C12Br2 to BSA generates larger endothermic peaks. The first endothermic peak is much stronger than that of the second endothermic peak. The double charges and strong hydrophobicity of the gemini surfactants are the main reasons for these observations. In addition, the spectra results show that the binding of DTAB to BSA only promotes BSA unfolding and aggregation, whereas the secondary structure of BSA is possibly stabilized by a small amount of C12C(S)C12Br2 , even if the small amount of binding C12C(S)C12Br2 could induce the loss of the tertiary structure of BSA. This result may be related to the double tails of gemini surfactants, which may generate the hydrophobic linkages between the nonpolar residues of BSA.  相似文献   

15.
Conductivity (kappa), turbidity (tau), and fluorescence (I1/I3) studies of hexadecyltrimethylammonium bromide (HTAB), hexadecylpyridinium bromide (HPyBr), and hexadecylpyridinium chloride (HPyCl) in aqueous poly(amido amine) (PAMAM) dendrimers of generations 0 to 2.5 G have been carried out. The complexation of surfactant monomers with the PAMAM surface groups is demonstrated by the critical aggregation concentration (cac), which is two to three orders of magnitude less than the micellization of cationic surfactants in aqueous PAMAM and denoted by critical micelle concentration (cmc*). In the presence of aqueous amine-terminated PAMAM, the cmc* value for each surfactant was much lower than the cmc in pure water, while they remain close to each other in the presence of aqueous ester-terminated PAMAM for each surfactant. The fluorescence studies demonstrated that both amine- and ester-terminated PAMAM interact with the cationic surfactants, though the mode of interaction varied due to the different nature of surface groups.  相似文献   

16.
In the recent genomic era, a novel gene silencing approach has been introduced based on the use of small synthetic oligonucleotides, such as antisense RNAs, siRNAs, to inhibit the expression of a specific target gene. Successful implementation of this methodology calls for the development of efficient systems to deliver small oligonucleotides into the cells using various natural and synthetic cationic agents. While extensive studies have focused on the interaction of various natural and synthetic cationic surfactants with long DNA, less attention has been paid to surfactant interaction with small oligonucleotides. In this study, the interaction between 14mer double stranded DNA and alkyltrimethylammonium bromides of C16 (cetyl, CTAB), C14 (tetradecyl, TTAB), and C12 (dodecyl, DTAB) chain lengths was investigated at different charge ratios by gel electrophoresis, ethidium bromide exclusion, circular dichroism, and UV melting. Our gel studies at 1 microM oligonucleotide concentration showed that CTAB, TTAB, and DTAB neutralize the oligonucleotides at a charge ratio (Z+/-) of 1, 14, and 50, respectively. At lower charge ratios, CTAB and TTAB interact with oligonucleotides, and the complexes show electrophoretic mobility shifts in the gel, while such mobility shifts were completely absent in the case of DTAB. UV melting experiments revealed that interaction with all three surfactants increased the thermostability of the oligonucleotide. The extent of thermal stabilization was highest in the case of CTAB, moderate in the case of TTAB, and extremely low in the case of DTAB. Oligonucleotides within fully neutralized complexes denatured at further higher temperatures, and again, stabilization was the highest in the case of CTAB followed by TTAB and DTAB, hence revealing that the oligonucleotides interacted more strongly with CTAB than with the other two surfactants. Ethidium bromide exclusion studies also supported our UV melting studies, confirming that CTAB binds most strongly to the oligonucleotide. CD titrations of oligonucleotides with increasing amounts of surfactants revealed common spectral patterns consisting of the progressive loss of CD signals for native helical DNA conformations. Overall, our results demonstrate that interaction between oligonucleotides and cationic surfactants, although qualitatively similar to long double stranded DNA, shows subtle differences that need to be understood to improve small oligonucleotide delivery into the cells by using common delivery agents that have been used to deliver long pieces of DNA.  相似文献   

17.
A direct estimation of salt-mediated potential of mean force (PMF) between spherical micelles of cationic surfactants is obtained for the first time using molecular dynamics (MD) simulations. Coarse-grained (CG) potentials benchmarked in an earlier study [Langmuir, 2011, 27(11), 6628-6638] are used to model a binary system of cetyltrimethylammonium chloride (CTAC) surfactant micelles at varying concentrations of sodium chloride (NaCl) or sodium salicylate (NaSal). The shape and structure of micelles are not subject to external constraints. NaSal is significantly more efficient in screening the intermicelle repulsive interactions shown by the PMF compared to NaCl due to a stronger binding of salicylate counterions to the micelle corona. Upon contact with each other, the micelles coalesce in the presence of NaSal to form a cylindrical structure which is stabilized by the adsorbed salicylate anions. Comparison of the PMF with Derjaguin-Landau-Verwey-Overbeek (DLVO) potentials shows qualitative agreement, while the magnitude of PMF is significantly greater than that of the DLVO potentials. To understand this discrepancy, PMF is evaluated by turning off (a) long-ranged electrostatic interactions and (b) solvent polarizability. The above effects are shown to play an important role in determining the solvent-mediated and ion-correlated interactions between the two micelles, which are not explicitly captured by mean-field double layer theories such as DLVO.  相似文献   

18.
The phase behaviors of the complex formed by didodecyldimethylammonium bromide(DDAB)and cetyltrimethylammonium bromide(CTAB)interacting with three different types of DNAs,salmon testes DNA(~2000 bp),21-bp double-stranded oligonucleotides(oligo-ds DNA),and 21-nt single-stranded oligonucleotides(oligo-ss DNA)were studied by synchrotron small-angle X-ray scattering.It was found that the DNA length and flexibility,together with the positive/negative charge ratio,determined the final structure.At higher charge ratios,the DNA length exhibited negligible effect.Both oligo-ds DNA and salmon DNA formed inverted hexagonal packing of cylinders with CTAB,as well as bilayered lamella with DDAB.However,at lower charge ratios,oligo-ds DNA formed a distorted hexagonal phase with CTAB and a new structure with DDAB,which was different from the behaviors of salmon DNA.The flexible oligo-ss DNA formed rich structures that were subject to environmental disturbance.Kinetic study also indicated that the structures of the complex formed by oligo-ss DNA took much longer to mature than the structures formed by oligo-ds DNA.We attributed this result to the conformational adjustment of oligo-ss DNA in the complex.  相似文献   

19.
The local dynamics and organization of micelles of new long-chain cationic surfactants with saturated hydrocarbon fragments (from C16 to C22) are investigated via the EPR spin-probe technique. The local mobility of spin probes in the hydrocarbon core of a micelle changes insignificantly, while the order parameter noticeably increases with lengthening of the hydrocarbon fragment of the surfactant molecule. The specific features of the interaction of the surfactants with network junctions of the gels formed by two types of hydrophobically modified polyacrylamides??either containing charged groups (sodium acrylate) in the backbone or lacking these groups??are studied. In both cases, the local mobility of network junctions of the gel increases after the introduction of the surfactant (C18). Moreover, for surfactant with a long alkyl group (C2), the microscopic viscosity of the gel based on the uncharged polymer decreases, although the local mobility of the network junctions increases. Possible causes of the observed specific features are discussed.  相似文献   

20.
Binding behaviors of ionic surfactants (decyl- and dodecyltrimethylammonium bromide (C(10)TAB, C(12)TAB), sodium decane sulfonate (SDeSo), and sodium dodecyl sulfate (SDS)) to poly(4-vinyl phenol) (P4VPh) gel were investigated to elucidate a specific swelling behavior that has been found for P4VPh gel in aqueous solutions of tetraalkylammonium salts. With increasing cationic surfactant concentration, P4VPh gel significantly deswelled and then remarkably reswelled at a concentration somewhat below the respective cmc values. On the other hand, in the case of the anionic surfactants, the gel only showed a marked swelling at a concentration just below the respective cmc values. A similar charge-specific behavior of the surfactants was also found for the P4VPh dispersion system studied with a UV-vis spectroscopy; namely, in the cationic surfactant-P4VPh systems, the turbidity of the dispersion first increased with increasing the surfactant concentration and then decreased. This result suggests that aggregation of P4VPh particles first occurred and finally the particles were solubilized. A red shift followed by a blue shift observed for a pi-pi absorption of phenol at around 278 nm was also consistent with the aggregation-solubilization behavior. In the anionic surfactant-P4VPh system, however, only solubilization of the polymer particle was observed, and the UV peak only showed a blue shift. All these results in the gel and the dispersion systems strongly suggest that the cation-pi interaction is involved in the binding of the cationic surfactants to P4VPh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号