首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra-fine particles of titanium dioxide (TiO(2)) and zinc oxides (ZnO) are very attractive as UV-protecting ingredients in cosmetic products. The UV-scattering behavior of complex suspensions in a silicone oil is studied in relation to rheological properties. To control the dispersion stability of suspensions, three polyoxyethylene (POE)-modified silicones of branch-type, (AB)(n)-type, and ABA-type are used as dispersants. Irrespective of molecular structure, the dispersants can stabilize the TiO(2) and ZnO particles and the flow of both single suspensions is Newtonian with low viscosity. However, the Newtonian flow profiles and high dispersion states are maintained only for complex suspensions prepared with ABA-type dispersant. Since the POE groups which are incorporated between terminal silicones groups attach to the particle surfaces, the steric stabilization is responsible for low viscosity and high dispersions. Because the UV scattering of suspensions is determined by the sizes of flocculated structures, the high transmittance in the visible ranges and low transmittance in the UVA and UVB ranges can be achieved in the presence of ABA-type dispersant.  相似文献   

2.
A novel bovine serum albumin (BSA) surface imprinted polymer based on ZnO rods was synthesized by surface grafting copolymerization. It exhibited an excellent recognition performance to bovine serum albumin. The adsorption capacity and imprinting factor of bovine serum albumin could reach 89.27 mg/g and 2.35, respectively. Furthermore, the fluorescence property of ZnO was used for tracing the process of protein imprinting and it implied the excellent optical sensing property of this material. More importantly, the hypothesis that the surface charge of carrier could affect the imprinting process was confirmed. That is, ZnO with positive surface charge could not only improve the recognition specificity of binding sites to template proteins (pI < 7), but also deteriorate the bindings between sites and non‐template proteins (pI > 7). It was also important that the reusability of ZnO@BSA molecularly imprinted polymers was satisfactory. This implied that the poor mechanical/chemical stability of traditional zinc oxide sensors could be solved by the introduction of surface grafting copolymerization. These results revealed that the ZnO@BSA molecularly imprinted polymers are a promising optical/electrochemical sensor element.  相似文献   

3.
A facile biosynthesis route was followed to prepare zinc oxide nanoparticles (ZnO NPs) using Euphorbia milii (E. milii) leaf constituents. The SEM images exhibited presence of spherical ZnO NPs and the corresponding TEM images disclosed monodisperse nature of the ZnO NPs with diameter ranges between 12 and 20 nm. The Brunauer–Emmett–Teller (BET) analysis revealed that the ZnO NPs have specific surface area of 20.46 m2/g with pore diameter of 2 nm–10 nm and pore volume of 0.908 cm3/g. The EDAX spectrum exemplified the existence of Zn and O elements and non-appearance of impurities that confirmed pristine nature of the ZnO NPs. The XRD pattern indicated crystalline peaks corresponding to hexagonal wurtzite structured ZnO with an average crystallite size of 16.11 nm. The FTIR spectrum displayed strong absorption bands at 512 and 534 cm?1 related to ZnO. The photocatalytic action of ZnO NPs exhibited noteworthy degradation of methylene blue dye under natural sunlight illumination. The maximum degradation efficiency achieved was 98.17% at an illumination period of 50 min. The reusability study proved considerable photostability of the ZnO NPs during photocatalytic experiments. These findings suggest that the E. milii leaf constituents can be utilized as suitable biological source to synthesis ZnO NPs for photocatalytic applications.  相似文献   

4.
Mg-doped zinc oxide and zinc oxide nanoparticles were prepared by using methanolic seed extract from the Eucalyptus grandis plant via a green approach. Phytoconstituents present in seed extract act as capping and stabilizing agents for the biosynthesis of nanoparticles. Doping of Mg to zinc oxide nanoparticles increases the bandgap energy, thus enhancing its chemical, physical and optical properties. Further, it was characterized by various techniques such as scanning electron microscopy giving morphological information about the wurtzite hexagonal structure of bio-synthesized nanoparticles. X-ray diffraction technique tells about the crystalline nature of particles and the average crystallite size for zinc oxide and doped zinc oxide nanoparticles. Mg as a dopant enhances the properties of nanoparticles, thus making it more efficiently applicable as an antibacterial agent against Escherichia coli, gram-negative bacteria.  相似文献   

5.
纳米TiO_2-ZnO二元负载木材的制备及性质   总被引:1,自引:0,他引:1  
采用两步法将TiO_2/ZnO纳米材料与杨木试样复合,制备了纳米二元负载木材.通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)对样品的结构和形貌进行了表征,并探讨了不同处理条件下得到的纳米氧化物负载木材及非纳米氧化物负载木材的抗菌性和耐候性.结果表明,氧化锌和二氧化钛二元协同负载木材的抗菌性和耐候性均优于单一纳米晶处理的木材;在溶剂热反应中以正己烷作为溶剂所制备样品的性能优于以水和无水乙醇为溶剂制备的样品;并且纳米结构负载木材的抗菌性和耐候性优于非纳米结构负载的木材.  相似文献   

6.
Poly(methyl methacrylate) (PMMA)/zinc oxide (ZnO) or carbazole polymer (PCEM)/ZnO nanocomposites, which are composed of high molecular weight PMMA or PCEM with narrow molecular weight distributions and ZnO nanoparticles, were successfully prepared by atom transfer radical polymerization (ATRP) initiated by 2-bromo-2-methylpropionyl (BMP) group (ZnBM) introduced onto the ZnO nanoparticle surfaces. Introduction of the BMP group onto the ZnO surfaces was achieved by esterification of OH group of the ZnO surfaces. The chemically attached OH group-having ZnO nanoparticles (ZnHM) were fabricated by sol-gel reaction from zinc acetate dihydrate, followed by treatment of the ZnO nanoparticles with 2-hydroxypropionic acid (HPA). The ZnHM nanoparticles showed one UV absorption and two emission bands: UV emission peak and broad visible emission band, while the ZnBM exhibited broad UV absorption and no emission spectra. The PMMA/ZnO nanocomposites displayed UV absorption and photoluminescent (PL) band with blue emission on the basis of the ZnHM nanoparticles, where the ZnO nanoparticles dispersed homogeneously in the PMMA matrix. The PCEM/ZnO nanocomposites depicted UV emission peak due to the carbazole unit in the UV range, but no visible emission. Thermal properties of the PMMA/ZnO nanocomposites were improved by dispersion of the ZnO nanoparticles into the PMMA, but the PCEM/ZnO nanocomposites showed no improvement of the thermal properties.  相似文献   

7.
A new process of leaching zinc oxide dust by ozone oxidation in a sulfuric acid system was studied. The main factors affecting the leaching rate, such as ozone time, leaching temperature, initial acidity, leaching time, and liquid/solid mass ratio, were comprehensively investigated. The results show that leaching efficiency depends on all the above factors. The optimum conditions for leaching Zn and Ge from zinc oxide dust are as follows: ozone time 10 min, leaching temperature 90 ℃, initial acidity 160 g/L, leaching time 60 min, and liquid/solid mass ratio 7:1. Under the optimum conditions, the leaching rates of Zn and Ge are 95.79% and 93.65%, respectively. The leaching rates of zinc and germanium in the ozone leaching are 4.05% and 10.49% higher than those of the atmospheric leaching, respectively. Therefore, it is determined that ozone in solution plays a key role in rapidly oxidizing sulfide and releasing encapsulated germanium. Sulfuric acid-ozone media can efficiently extract Zn and Ge from zinc oxide dust.  相似文献   

8.
The mechanism of the reaction between CH4 and ZnO has been studied theoretically at the CCSD(T)//B3LYP/6-311++G(2d,2p) levels. Four possible reaction pathways, yielding three products of syngas, HCHO and CH3OH, respectively, have been evaluated. All the four pathways are predicted to occur via the formation of CH4ZnO molecular complex with two H atoms of CH4 approaching to the Zn end of ZnO. From this complex, the insertion of ZnO into the CH bond of CH4 might proceed through two concerted manners along with charge transfer process. The pathway corresponding to the production of syngas is energetically feasible, in which the cleavage of CH and ZnH bonds with the formation of H2 molecule is predicted to be the rate-limiting-step with the energy barrier of 45.4 kcal/mol.  相似文献   

9.
Novel glass electrodes for the determination of cations with reversible internal solid contact are introduced. They are based on a semiconducting zinc oxide layer with a maximum thickness of 1 μm in contact with ion selective glasses on one side and with a metal layer on the other side. The metal oxide layer is thereby generated either by ultrasonic spray pyrolysis from zinc acetate solution, by electrochemical deposition from zinc nitrate solution or by spin coating from a dispersion of ZnO in an organic binder. A following activation in a palladium chloride solution allows the chemical reductive deposition of NiP as electronic conductor. Dipping-type and flow through electrodes as well as planar glass electrodes in thick film technology fabricated in the above-mentioned method are described. In this case gold electrodes are applied by screen printing on isolated steel substrates. The zinc oxide layers, created in different manners, are covered afterwards with cation selective glasses in thick film technology. They cause a stabilisation of the half-cell potentials of the all solid state indicator electrodes proved by suitable measurements.  相似文献   

10.
Thermal decomposition process of zinc hydroxide chloride (ZHC), Zn5(OH)8Cl2·H2O, prepared by a hydrothermal slow-cooling method has been investigated by simultaneous X-ray diffractometry and differential scanning calorimetry (XRD-DSC) and thermogravimetric-differential thermal analysis (TG-DTA) in a humidity-controlled atmosphere. ZHC was decomposed to ZnO through β-Zn(OH)Cl as the intermediate phase, leaving amorphous hydrated ZnCl2. In humid N2 with PH2O=4.5 and 10 kPa, the hydrolysis of residual ZnCl2 was accelerated and the theoretical amount of ZnO was obtained at lower temperatures than in dry N2, whereas significant weight loss was caused by vaporization of residual ZnCl2 in dry N2. ZnO formed by calcinations in a stagnant air atmosphere had the same morphology of the original ZHC crystals and consisted of the c-axis oriented column-like particle arrays. On the other hand, preferred orientation of ZnO was inhibited in the case of calcinations in 100% water vapor. A detailed thermal decomposition process of ZHC and the effect of water vapor on the crystal growth of ZnO are discussed.  相似文献   

11.
Zinc oxide nanorod formation in 1,4-butanediol was studied as a function of time and temperature using TEM and UV–Vis absorption spectra. Nanorod morphologies are formed by annealing of dilute nanodots, initially formed by sol–gel reaction in 1,4-butanediol. The nanorod morphology is unusual in the termination of the c-axis facets, with one end perpendicular to the a facets (flat) and the other faceted into a six-sided point. Ripening of nanodots proceeds via the Lifshitz–Slyozov–Wagner model of diffusion limited coarsening, and annealing at elevated temperature leads a transition to nanorod morphologies. Nanoparticle dissolution and shape development affect the axial ratio of the growing nanorods. Evidence of oriented attachment was not observed in the ripening study. The use of 1,4-butanediol allows for higher temperature reaction than in alcohols, without the use of pressure vessels.  相似文献   

12.
Zinc oxide has been used as a matrix for immobilization of acetylcholinesterase (AChE) and detection of the pesticide paraoxon. The immobilized enzyme retained its enzymatic activity up to three months when stored in phosphate buffered saline (pH 7.4) at 4 °C. An amperometric biosensor for the detection of paraoxon was designed. The biosensor detected paraoxon in the range 0.035-1.38 ppm and can be used to detect other AChE inhibiting organophosphate pesticides.  相似文献   

13.
14.
We report on the synthesis of ZnO and TiO2 nanoparticles by solution-phase methods, with a particular focus on the influence of experimental parameters on the kinetics of nucleation and coarsening. The nucleation rate of ZnO from the reaction between ZnCl2 and NaOH in ethanol was found to increase with increasing precursor concentration, while the coarsening rate is independent of precursor concentration up to a threshold concentration. The nucleation rate of ZnO from Zn(OOC-CH3)2 and NaOH in n-alkanols was found to decrease with decreasing chain length, which is explained by the increase of the dielectric constant of the solvent. Due to the larger solubility of ZnO, nucleation is significantly slower than that observed in the case of TiO2. TiO2 nanoparticles coarsen according to the Lifshitz-Slyozov-Wagner model for Ostwald ripening. We also show that using amorphous titania as a base material, pure anatase and brookite nanoparticles can be synthesized.  相似文献   

15.
Sakharov  A. M.  Il"in  V. V.  Rusak  V. V.  Nysenko  Z. N.  Klimov  S. A. 《Russian Chemical Bulletin》2002,51(8):1451-1454
Copolymerization of carbon dioxide with propylene oxide in the presence of zinc adipate was studied. The effects of the temperature, nature of the solvent, and catalyst concentration on the molecular weight, molecular-weight distribution, and yields of the copolymer and propylene carbonate were examined. The structure of the polymer obtained was studied by 13N and 1I NMR spectroscopy.  相似文献   

16.
The influence of pyrolysis temperature on the properties of sol–gel derived zinc oxide films has been investigated. As-deposited films were pyrolyzed at 300 °C for 30 min and at 500 °C for 10 min. Final annealing was done at 600 °C for 30 min in air. The as-grown films deposited on soda-lime-silica glass substrates were highly c-axis oriented. Distinct grain structure was present in the film pyrolyzed at 500 °C, while the surface of the film pyrolyzed at 300 °C was smooth and no observed texture. The surface of ZnO pyrolyzed at 300 °C was covered with needle-like grain growth. With increasing pyrolysis temperature at 500 °C, a three-dimensional island formation was appeared.  相似文献   

17.
Four kinds of ring-fluorinated fluoresceins and sulfofluorescein from tetrafluororesorcinol and/or tetrafluorophthalic anhydride have been synthesized and the photochemical properties of the zinc oxide nanocrystalline electrode sensitized by the ring-fluorinated fluoresceins were investigated.  相似文献   

18.
In order to prepare a novel photo-degradable polypropylene (PP), an addition of poly(ethylene oxide) (PEO) microcapsule containing TiO2 to PP was performed. Adsorbed H2O in the PEO phase and the TiO2 photocatalytically reacted, and a hydroxyl radical (OH), which initiated the PEO degradation, was produced. The degraded PEO produced an acid and an aldehyde, which were able to facilitate PP degradation. The addition of the PEO/TiO2 microcapsule brought about the facilitative effect of the PP degradation. In addition, an addition of a hindered amine light stabilizer (HALS) had a potential to suppress the PP degradation initiated by the microcapsule. The suppression effect was rising by the simultaneous addition of a phenolic antioxidant in the early phase of the PP degradation. However, the simultaneous addition showed an antagonism after 4 h degradation. This behavior suggested that the HALS also worked as a neutralizer of the produced acid.  相似文献   

19.
We report the synthesis of {[3-(biscarboxymethylamino)-2-methoxy-5-methylphenyl]carboxymethylamino}acetic acid, which functions as a Zn2+ selective fluorescence probe (sensor).  相似文献   

20.
Microbial contaminants such as bacteria and viruses are of great concern in water. As nanotechnology continues to grow, understanding the interactions of nanoparticles with bacteria and viruses is important to protect public health and the environment. In this study, the effect of two commonly used nanoparticles, silver nanoparticles (AgNPs, average particle size=21 nm) and zinc oxide nanoparticles (ZnO NPs, average particle size=39 nm), on the growth of bacteria (Eschericia coli) and bacteriophages (MS2) were evaluated using a standard double agar layer (DAL) method and a turbidimetric microtiter assay. A 1-h prior exposure of MS2 to nanoparticles did not inactivate MS2 at the highest nanoparticle concentrations tested (5mg/L total Ag and 20 mg/L ZnO). No bacteriophage inactivation was observed in the presence of AgNPs, Ag(+)/AgNPs (50:50 in mass ratio) or Ag(+) ions, all at the total Ag concentration of 5mg/L. In a binary (bacteria-phages) system where the E. coli host was exposed to MS2 and nanoparticles simultaneously, the dynamic changes of active bacteria and MS2 phages during incubation demonstrated that exposure of AgNPs (5mg/L Ag) and ZnO NPs (20mg/L ZnO) increased the number of phages by 2-6 orders of magnitude. These results suggested that exposure of nanoparticles could greatly facilitate bacterial viruses like MS2 to infect the E. coli host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号