首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the functional differential equation with impulsive perturbations
$ \left\{ {{*{20}{c}} {{x^{\prime}}(t) = f\left( {t,{x_t}} \right),} \hfill & {t \geq {t_0},\quad t \ne {t_k},\quad x \in {\mathbb{R}^n},} \hfill \\ {\Delta x(t) = {I_k}\left( {t,x\left( {{t^{-} }} \right)} \right),} \hfill & {t = {t_k},\quad k \in {\mathbb{Z}^{+} }.} \hfill \\ } \right. $ \left\{ {\begin{array}{*{20}{c}} {{x^{\prime}}(t) = f\left( {t,{x_t}} \right),} \hfill & {t \geq {t_0},\quad t \ne {t_k},\quad x \in {\mathbb{R}^n},} \hfill \\ {\Delta x(t) = {I_k}\left( {t,x\left( {{t^{-} }} \right)} \right),} \hfill & {t = {t_k},\quad k \in {\mathbb{Z}^{+} }.} \hfill \\ \end{array} } \right.  相似文献   

2.
In this paper, boundedness criteria are established for solutions of a class of impulsive functional differential equations with infinite delays of the form $$\begin{gathered} x'(t) = F(t,x( \cdot )), t > t^ * \hfill \\ \Delta x(t_k ) = I(t_k ,x(t_k^ - )), k = 1,2,... \hfill \\ \end{gathered} $$ By using Lyapunov functions and Razumikhin technique, some new Bazumikhin-type theorems on boundedness are obtained.  相似文献   

3.
具有脉冲的二阶三点边值问题存在性定理   总被引:2,自引:0,他引:2  
In this paper, two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses  相似文献   

4.
In the paper, we obtain the existence of positive solutions and establish a corresponding iterative scheme for BVPs $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u(0) - B(u\prime (\eta )) = 0, u\prime (1) = 0 \hfill \\ \end{gathered} \right.$$ and $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u\prime (0) = 0, u(1) + B(u\prime (\eta )) = 0 \hfill \\ \end{gathered} \right.$$ The main tool is the monotone iterative technique. Here, the coefficientq(t) may be singular att = 0,1.  相似文献   

5.
For the generator A of a C 0-semigroup on a Banach space (X, ∥·∥), we apply the perturbation of Desch-Schappacher type to solve the Volterra integordifferential equation VE $$\left\{ \begin{gathered} \frac{{du\left( t \right)}}{{dt}} = A\left( {u\left( t \right) + \int_0^t {a\left( {t - s} \right)B_1 u\left( s \right)ds + B_2 u\left( t \right) + B_3 f\left( t \right)} } \right) \hfill \\ + \int_0^t {b\left( {t - s} \right)B_4 u\left( s \right)ds + B_5 u\left( t \right) + g\left( t \right),t \geqslant 0,} \hfill \\ u\left( 0 \right) = u_0 , \hfill \\ \end{gathered} \right.$$ > which can be applied to treat boundary value problems and inhomogeneous retarded differential equations.  相似文献   

6.
We study the initial boundary value problem for the nonlinear wave equation: (*) $$\left\{ \begin{gathered} \partial _t^2 u - (\partial _r^2 + \frac{{n - 1}}{r}\partial _r )u = F(\partial _t u,\partial _t^2 u),t \in \mathbb{R}^ + ,R< r< \infty , \hfill \\ u(0,r) = \in _0 u_0 (r),\partial _t u(0,r) = \in _0 u_1 (r),R< r< \infty , \hfill \\ u(t,R) = 0,t \in \mathbb{R}^ + , \hfill \\ \end{gathered} \right.$$ wheren=4,5,u 0,u 1 are real valued functions and ∈0 is a sufficiently small positive constant. In this paper we shall show small solutions to (*) exist globally in time under the condition that the nonlinear termF:?2→? is quadratic with respect to ? t u and ? t 2 u.  相似文献   

7.
This paper deals with the periodic boundary value problem for nonlinear impulsive functional differential equation
$ \left\{ \begin{gathered} x'(t) = f(t,x(t),x(\alpha _1 (t)),...,x(\alpha _n (t)))fora.e.t \in [0,T], \hfill \\ \Delta x(t_k ) = I_k (x(t_k )),k = 1,...,m, \hfill \\ x(0) = x(T). \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} x'(t) = f(t,x(t),x(\alpha _1 (t)),...,x(\alpha _n (t)))fora.e.t \in [0,T], \hfill \\ \Delta x(t_k ) = I_k (x(t_k )),k = 1,...,m, \hfill \\ x(0) = x(T). \hfill \\ \end{gathered} \right.   相似文献   

8.
It is shown that any solution to the semilinear problem{ ut = uxx + δ(1-u)-p , (x, t) ∈ (-1 , 1) × (0 , T ), u( ±1 , t) = 0, t ∈ (0 , T ), u(x, 0) = u0(x) 1, x ∈ [ 1 , 1] either touches 1 in finite time or converges smoothly to a steady state as t →∞. Some extensions of this result to higher dimensions are also discussed.  相似文献   

9.
We study equations of the form $$\begin{gathered} u_{tt} + Lu + b(x,t)u_t = a(x,t)\left| u \right|^{\sigma - 1} u, \hfill \\ - u_t + Lu = a(x,t)\left| u \right|^{\sigma - 1} u \hfill \\ \end{gathered}$$ , whereL is a uniformly elliptic operator and 0<σ<1. In the half-cylinder II0,∞={(x, t):x= (x 1,...,x n )∈ ω,t>0}, where ? ? ? n is a bounded domain, we consider solutions satisfying the homogeneous Neumann condition forx∈?ω andt>0. We find conditions under which these solutions have compact support and prove statements of the following type: ifu(x, t)=o(t γ) ast→∞, then there exists aT such thatu(x, t)≡0 fort>T. In this case γ depends on the coefficients of the equation and on the exponent σ.  相似文献   

10.
This article provides an asymptotic formula for the number of integer points in the three-dimensional body $$ \left( \begin{gathered} x \hfill \\ y \hfill \\ z \hfill \\ \end{gathered} \right) = t\left( \begin{gathered} (a + r\cos \alpha )\cos \beta \hfill \\ (a + r\cos \alpha )\sin \beta \hfill \\ r\sin \alpha \hfill \\ \end{gathered} \right),0 \leqq \alpha ,\beta < 2\pi ,0 \leqq r \leqq b, $$ for fixed a > b > 0 and large t.  相似文献   

11.
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ where Δ is the Laplacian in EuclideanN-spaceR N, R+=(0, ∞) and Ω is a bounded domain inR N with a piecewise smooth boundary δΩ.  相似文献   

12.
Using the Leggett-Williams fixed point theorem,we will obtain at least three symmetric positive solutions to the second-order nonlocal boundary value problem of the form u(t)+g(t)f(t,u(t))=0,0相似文献   

13.
This paper is devoted to proving the sharpness on the lower bound of the lifespan of classical solutions to general nonlinear wave equations with small initial data in the case n = 2 and cubic nonlinearity (see the results of T. T. Li and Y. M. Chen in 1992). For this purpose, the authors consider the following Cauchy problem:
$\left\{ \begin{gathered} \square u = \left( {u_t } \right)^3 , n = 2, \hfill \\ t = 0: u = 0, u_t = \varepsilon g\left( x \right), x \in \mathbb{R}^2 , \hfill \\ \end{gathered} \right.$\left\{ \begin{gathered} \square u = \left( {u_t } \right)^3 , n = 2, \hfill \\ t = 0: u = 0, u_t = \varepsilon g\left( x \right), x \in \mathbb{R}^2 , \hfill \\ \end{gathered} \right.  相似文献   

14.
The initial boundary value problem
$ {*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ $ \begin{array}{*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ \end{array}  相似文献   

15.
This paper concerns the study of the numerical approximation for the following initialboundary value problem
$ \left\{ \begin{gathered} u_t - u_{xx} = f\left( u \right), x \in \left( {0,1} \right), t \in \left( {0,T} \right), \hfill \\ u\left( {0,t} \right) = 0, u_x \left( {1,t} \right) = 0, t \in \left( {0,T} \right), \hfill \\ u\left( {x,0} \right) = u_0 \left( x \right), x \in \left[ {0,1} \right], \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} u_t - u_{xx} = f\left( u \right), x \in \left( {0,1} \right), t \in \left( {0,T} \right), \hfill \\ u\left( {0,t} \right) = 0, u_x \left( {1,t} \right) = 0, t \in \left( {0,T} \right), \hfill \\ u\left( {x,0} \right) = u_0 \left( x \right), x \in \left[ {0,1} \right], \hfill \\ \end{gathered} \right.   相似文献   

16.
Ru Ying  XUE 《数学学报(英文版)》2010,26(12):2421-2442
we study an initial-boundary-value problem for the "good" Boussinesq equation on the half line
{δt^2u-δx^2u+δx^4u+δx^2u^2=0,t〉0,x〉0.
u(0,t)=h1(t),δx^2u(0,t) =δth2(t),
u(x,0)=f(x),δtu(x,0)=δxh(x).
The existence and uniqueness of low reguality solution to the initial-boundary-value problem is proved when the initial-boundary data (f, h, h1, h2) belong to the product space
H^5(R^+)×H^s-1(R^+)×H^s/2+1/4(R^+)×H^s/2+1/4(R^+)
1 The analyticity of the solution mapping between the initial-boundary-data and the with 0 ≤ s 〈 1/2. solution space is also considered.  相似文献   

17.
Suppose Δn u = div (¦ ?u ¦n-2?u) denotes then-Laplacian. We prove the existence of a nontrivial solution for the problem $$\left\{ \begin{gathered} - \Delta _n u + \left| u \right|^{n - 2} u = \int {(x,u)u^{n - 2} in \mathbb{R}^n } \hfill \\ u \in W^{1,n} (\mathbb{R}^n ) \hfill \\ \end{gathered} \right.$$ wheref(x, t) =o(t) ast → 0 and ¦f(x, t)¦ ≤C exp(αn¦t¦n/(n-1)) for some constantC > 0 and for allx∈?;t∈? with αn =nω n 1/(n-1) , ωn = surface measure ofS n-1.  相似文献   

18.
Our aim is to study the following new type of multivalued backward stochastic differential equation: $$\left\{ \begin{gathered} - dY\left( t \right) + \partial \phi \left( {Y\left( t \right)} \right)dt \ni F\left( {t,Y\left( t \right),Z\left( t \right),Y_t ,Z_t } \right)dt + Z\left( t \right)dW\left( t \right), 0 \leqslant t \leqslant T, \hfill \\ Y\left( T \right) = \xi , \hfill \\ \end{gathered} \right.$$ where ? φ is the subdifferential of a convex function and (Y t , Z t ):= (Y(t + θ), Z(t + θ)) θ∈[?T,0] represent the past values of the solution over the interval [0, t]. Our results are based on the existence theorem from Delong & Imkeller, Ann. Appl. Probab., 2010, concerning backward stochastic differential equations with time delayed generators.  相似文献   

19.
We show that under suitable conditions $$\begin{gathered} E_x f\left\{ {a + \int_0^t \beta \left[ {b + \int_0^s {\alpha \left( {X_r } \right)dr, c + s, X_s } } \right]ds, b + \int_0^t {\alpha \left( {X_s } \right)ds, c + t, X_t } } \right\} \hfill \\ = e^{tG} f\left[ {a, b, c, x} \right] \hfill \\ \end{gathered} $$ whereX t is a Brownian motion andG is the generator of a (C 0) contraction semigroupe tG.  相似文献   

20.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号