首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Composite Interfaces》2013,20(5-7):495-503
Silica/poly(divinylbenzene) (PDVB) composite particles were synthesized by the dispersion polymerization of divinylbenzene (DVB) with ultrafine silica particles in supercritical carbon dioxide (scCO2). Silica particles of average diameter 130 nm were pretreated with 3-(trimethoxysilyl) propyl methacrylate in order to be well dispersed in CO2 and participated in the polymerization. Random copolymeric dispersant, poly(diisopropylaminoethyl methacrylate-co-heptafluorobutyl methacrylate) was used as a stabilizer to provide sufficient stabilization to latexes in scCO2 and the silica/PDVB composite powder was obtained in high yield from the polymerization. SEM analysis revealed that the composite particles prepared at 5% silica loading ratio and 6% stabilizer concentration with respect to monomer have the average diameter of 1.60 μm with uniform and spherical morphology. The composites were also characterized by FTIR spectroscopy and TGA.  相似文献   

2.
A method for producing finely dispersed powders of methyl methacrylate (MMA)-styrene copolymer by radical polymerization in a supercritical carbon dioxide medium (SC-CO2) was proposed, studied, and experimentally implemented. The dispersing agent (surfactant), which made it possible to obtain nearly monodisperse size distribution of polymer particles, was poly(dimethylsiloxane methacrylate), a SC-CO2-soluble substance. The copolymer, synthesized with a molecular mass of M w ~ 36000 in the form of spherical particles with a characteristic size of ~1 μm, exhibited a higher thermal stability as compared to poly(methyl methacrylate) with a similar molecular mass. Varying the percentage ratio between MMA and styrene monomers, it was possible effectively control the integral hydrophobicity and physicomechanical characteristics of the methacrylate-styrene copolymer.  相似文献   

3.
《Composite Interfaces》2013,20(5-7):505-512
The Al(OH)3/acrylic copolymer latexes were synthesized through the emulsion polymerization of acrylic monomers, butyl acrylate and 2-ethylhexyl acrylate in the presence of surface-functionalized Al(OH)3 filler particles. The polymerization was stabilized by polyoxyethylene (50) nonyl phenyl ether (NP-1050, nonionic surfactant) and ammonium (POE) alkyl aryl ether sulfate (EU-S133D, anionic surfactant) to produce stable composite latexes. The improved compatibility of Al(OH)3 surface with acrylic monomers was achieved by the modification with 3-(trimethoxysilyl) propyl methacrylate (γ-MPS). Transmission electron microscopy showed that nano-sized Al(OH)3 particles were slightly agglomerated in the copolymer latex. When pristine Al(OH)3 was used as a filler or γ-MPS-modified Al(OH)3 particles were added above 30 wt% with respect to monomers, unstable latexes were obtained, which were partially precipitated out on standing for prolonged time. The flame retardation effect was not apparent with the incorporation of Al(OH)3 in the latexes by 30 wt% as shown by LOI test.  相似文献   

4.
《Composite Interfaces》2013,20(5-6):371-380
This paper describes the radical graft polymerizations of vinyl monomers from carbon fiber surface initiated by azo groups introduced onto the fiber surface. The carbon fiber used in this experiment was the polyacrylonitrile type. The introduction of azo groups onto the carbon fiber surface was achieved by the reaction of 4,4'-azobis (4-cyanopentanoic acid) with isocyanate groups which were previously attached onto the surface by the treatment of the fiber with tolylene 2,4-diisocyanate. The amount of surface azo groups introduced onto nitric acid-treated carbon fiber was determined to be 0.60 x 10-5 mol 9-1 by nitrogen analysis. The radical graft polymerization of methyl methacrylate (MMA) was tried. Though the thermal polymerization of MMA proceeded slightly in the absence or in the presence of untreated carbon fiber, the rate of the polymerization was considerably low. In contrast, the graft polymerization of MMA was initiated in the presence of the carbon fiber having surface azo groups, and part of resultant poly(MMA) grafted onto the surface. The percentage of grafting increased with an increase in polymerization time and reached 42.8% after 24 h. The graft polymerizations of other monomers, such as styrene, vinyl acetate, and acrylic acid, were also initiated by the surface azo groups attached onto the carbon fiber, and the corresponding polymer effectively grafted onto the surface.  相似文献   

5.
Hollow black TiO nanosparticles were obtained via deposition of inorganic coating on the surface of hollow core-shell polymer latex with Ti(OBu)4 as precursor and subsequent calcination in ammonia gas. Hollow TiO particles were characterized by scanning electron microscope, transmission electronic microscopy, X-ray diffraction, and thermogravimetric analysis. Encapsulation of TiO via dispersion polymerization was promoved by pretreating the pigments with 3-(trimethoxysilyl) propyl methacrylate, making it possible to prepare hollow TiO-polymer particles. When St and DVB were used as polymerization monomer, hollow TiO-polymer core-shell particles came into being via dispersion polymerization, and the lipophilic degree is 28.57%. Glutin-arabic gum microcapsules containing TiO-polymer particles electrophoretic liquid were prepared using via complex coacervation. It was founded that hollow TiO-polymer particles had enough electrophoretic mobility after coating with polymer.  相似文献   

6.
Utilizing metal‐organic frameworks (MOFs) as a “polymerization container” is a very effective method to prepare oriented and therefore birefringent polymer materials. In particular, the adsorption of polymer monomers and molecular chains within MOFs has a profound impact on the orientation of polymer chains. In this work, a theoretical study on the adsorption properties of methyl methacrylate (MMA) and its molecular chain within MOFs has been conducted by employing a combination of molecular dynamics, density functional theory, and Monte Carlo method, where 2 MOFs, [Zn2(1,4‐benzenedicarboxylate)2triethylenediamine]n and [Zn2(4,4′‐biphenyldicarboxylate)2triethylenediamine]n, were chosen. The corresponding number and degree of orientation of adsorbed molecules in these 2 MOFs were obtained from the simulations. The calculation results revealed 3 factors that affect the adsorption and orientation of MMA monomers in MOF pore channels. First, as the walls of the MOF pores are polar surfaces and consist of metal ions and organic ligands, the electrostatic interaction between the MOF channels and polar MMA molecules promotes the adsorption and orientation of the MMA monomers within the pore channel. Second, the electrostatic interactions between monomers can reduce the intermolecular gaps, which similarly assist in their orientation. Last, the relative sizes of the MOF pores and the monomers are also relevant. When the sizes of the MOF channels and monomers are similar, the molecular chains show a higher degree of orientation. The results and the findings of this work could provide predictive methods for selecting polymeric monomers or MOFs that may be ideal for the control of polymer chain orientation.  相似文献   

7.
What is believed to be the first evidence of an all-optical orientation of a highly transparent polymer is presented. The samples are bulk rods of poly(methyl methacrylate) grafted with paranitroaniline (PNA) obtained by use of copolymerization of methyl methacrylate (MMA) monomers mixed with grafted MMA-PNA monomers. Bulk samples were obtained after molding and polishing of the copolymer with standard techniques. Experiments show that the photoinduced second-order(1) susceptibility chi((2)) may occur through molecular reorientation following selective polar excitation of the nonlinear chromophores by simultaneous two- and three-photon absorption on the same electronic level.  相似文献   

8.
用^13C NMR研究了由基团转移共聚得的的甲基丙烯酸甲酯-丙烯酸酯共聚物的微观结构,共聚物中单体链节的三元组含量从季碳和羰基碳的共振信号测得,实验测得的三元组分数与通过竞聚率和单体组成比按末端基效应模式的计算值相符,丙烯酸丁酯由于具有大得多的竞聚率值而呈现较强的均聚倾向。  相似文献   

9.
Radical polymerization of vinyl monomers as initiated by the diphenylphosphinoyl (DPO) radical which is formed by the photo-cleavage of 2,4,6-trimethylbenzoyl diphenylphosphine oxide (TMDPO) was investigated by continuous-wave electron spin resonance (cw ESR) and Fourier-transform (FT) ESR. Well-resolved hyperfine structures (hfs’s) of the starting radicals were observed by the time-resolved cw ESR for vinyl acetate, ethyl vinyl ether, styrene, methyl methacrylate (MMA), and isoprene. The rates of formation and the spin-lattice relaxation were determined by time-resolved FT ESR for these starting radicals. In the polymerization of MMA and isoprene the primary propagating radicals were found for the first time by the observation of their well-resolved hfs’s with timeresolved cw ESR. On the basis of the kinetic analysis including the spin-lattice relaxation, the rates of formation and the spin-lattice relaxation were determined by simulation of the time profile of FT ESR for the primary propagating radicals of MMA and isoprene. The rate of the primary propagating step was found to be by two orders greater than an average value of whole propagating steps as obtained by a steady-state measurement.  相似文献   

10.
The synthetic route of unsubstituted polythiophene (PT) nanoparticles was investigated in aqueous dispersion via Fe3+-catalyzed oxidative polymerization. With this new synthetic method, high conversion of thiophene monomers was obtained with only a trace of FeCl3. The dispersion state showed that the PT nanoparticles were well dispersed in many polar solvents, compared to non-polar solvents, such as acetone, chloroform, hexane, and ethyl acetate. To compare the photoluminescence properties between PT nanoparticle dispersion and PT bulk polymers, the PL intensities were measured in the same measuring conditions. Further, core–shell poly(styrene/thiophene) (poly(St/Th)) latex particles were successfully prepared by Fe3+-catalyzed oxidative polymerization during emulsifier-free emulsion polymerization. The different polymerization rates of each monomer resulted in core–shell structure of the poly(St/Th) latex particles. The PL data of the only crumpled shells gave evidence that the shell component of core–shell poly(St/Th) latex particles is indeed PT, which was corroborated by SEM data. PL intensity of the core–shell poly(St/Th) nanoparticle dispersion was much higher than that of the PT nanoparticle dispersion, due to its thin shell layer morphology, which was explained by the self-absorption effect.  相似文献   

11.
Polymers are a kind of attractive hosts for laser dyes because of their superior optical homogeneity, and high transparency in pumping and lasing range. Copolymers usually have higher damage threshold and better photostability than mono-polymers. Solid dye samples based on copolymer of methyl methacrylate (MMA) with 2-hydroxypropyl methacrylate (HPMA) doped with 1-, 3-, 5-, 7-, 8-pentamethyl-2, 6-diethylpyrromethene-BF2 (PM567) are prepared. Spectra and lasing properties of the samples are studied. Compared to the samples based on monopolymer polymethyl methacrylate (PMMA), enhanced slope efficiency and photostability are obtained in the copolymers. The highest slope efficiency is 45.1%, and nearly one-fold increase of photostability is obtained. The longest useful lifetime of 4390 pumping pulses is presented with the pump energy as high as 183 mJ per pulse at repetition rate of 10 Hz. The results indicate that the laser performances of solid dye mediums can be greatly increased using copolymer of MMA with HPMA as host.  相似文献   

12.
A novel polymerizable surfactant (so-called surfmer) was synthesized and characterized according to its structure, surface activity and polymerization ability. Polymeric micelles (size of 6 and 130 nm) appeared in the polyreaction initiated by free radicals from VA-044. In the presence of the monomer (i.e., methyl methacrylate) microemulsion systems were formed that in turn were transformed into latex entities (size — 40 nm). Additionally, an emulsion polymerization was performed with the use of n-hexadecane as an oil phase resulting in the production of nanocapsules (size in the range — 165–220 nm). The shape and morphologies of the nanoobjects were confirmed using Atomic Force Microscopy (AFM).  相似文献   

13.
A dual-beam pulsed-laser time-resolved thermal lens (TRTL) has been used to study the heat dissipation effects in solid polymers employed as laser dyes. The laser-dye samples studied are polymer solutions of rhodamine 6G (Rh6G), namely homopolymers of methyl methacrylate (MMA) and copolymers of methyl methacrylate and 2-hydroxyethyl methacrylate (HEMA) with MMA:HEMA compositions 1:1 and 7:3 vol./vol., where the dye is either dissolved or modified and copolymerized with methacrylate monomers. The long-term stability of the laser material is independent of the thermal diffusivity of the samples, as determined by the TRTL technique. This suggests that the rate of heat dissipation does not play a major role in the photostability of the samples. In contrast, the TRTL experiments have revealed permanent changes in the optical properties of the polymers when subjected to a large number of laser pulses. This is explained in terms of permanent plastic deformation of the matrices. Received: 19 June 2002 / Revised version: 1 August 2002 / Published online: 15 November 2002 RID="*" ID="*"Dedicated to Prof. S.E. Braslavsky on the occasion of her 60th birthday. This work was presented at the V Congreso de Fotoquímica, Torremolinos, Spain, 2001 RID="**" ID="**"Corresponding author. Fax: +34-93/205-6266, E-mail: s.nonell@iqs.es  相似文献   

14.
Hydrophobic magnesium aluminum hydroxide composite particles (PMMA-MAH) were obtained by means of grafting poly(methyl methacrylate) (PMMA) onto the surface of magnesium aluminum hydroxide(MAH) nanoparticles after a novel type of phosphate coupling agent (DN-27) modification. The introduction of functional double bonds was firstly conducted on the surface of nanoparticles by DN-27 modification, followed by one-pot in situ polymerization on the particles surface using methyl methacrylate (MMA) as monomer, azoisobutyronitrile (AIBN) as initiator and sodium dodecyl sulfate (SDS) as stabilizer to graft PMMA on the surface of DN-27-modified MAH particles. The obtained composite particles were characterized by field-emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD). The results show that the organic macromolecule PMMA could be successfully grafted on the surface of DN-27-modified MAH nanoparticles and the thermal stability of the PMMA-MAH composite particles had been improved. Compared with unmodified blank MAH sample, the product obtained with this method possesses better hydrophobic properties such as a higher water contact angle of 108° and a well dispersion.  相似文献   

15.
Transparent BaTiO3 nanoparticle/polymer hybrid was synthesized by polymerization and hydrolysis of barium titanium alkoxide modified with 2-vinyloxyethoxy ligand. Barium alkoxide, titanium alkoxide and 2-vinyloxyethanol were reacted affording a BaTiO3 precursor, which was then hydrolyzed and polymerized to form BaTiO3 particle/polymer hybrids below 100°C. BaTiO3 particles increased in crystallinity with increasing water amount for hydrolysis. The absorption edge of the hybrid film on silica plates shifted to shorter wavelength with decreasing crystallite size. Nano-sized BaTiO3 particle/polymer hybrid polymerized with methyl methacrylate (MMA) was shaped into a transparent and self-standing film with a refractive index of 1.595 at 589 nm.  相似文献   

16.
Thermal and mechanical properties of blended radiation prevulcanized natural rubber latex (RVNRL) and low nitrosamines latex (LNL) were studied. RVNRL was blended with LNL at various composition ratios. From the tensile test, it was found that the optimum tensile value was attained at a total blending ratio of 70% RVNRL and 30% LNL. Latex blending with optimum tensile strength was then subjected to gamma irradiation at various doses with the presence and absence of methyl methacrylate (MMA) at 10?pphr. It was found that the gamma irradiation of latex blend with the presence of MMA could help increase further the tensile value. Composition of blending at a specific ratio and gamma irradiation at a specific dose has led to a significant improvement in the mechanical properties of the latex blend. The formation of grafting in the latex blend was characterized by Fourier transform infrared spectra (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopy confirmed that MMA could be grafted onto blended latex effectively under appropriate irradiation conditions. Two new peaks at 1731 and 1149?cm?1 were observed after irradiation, indicating the presence of an ester group from poly(methyl methacrylate) (PMMA), which was grafted onto rubber chains. This finding was proved by the presence of new Tg in DSC analysis. The increase in new Tg indicates the movement of grafting chains, which are tightly bound onto rubber chains.  相似文献   

17.
Photoinduced chemical vapor deposition was used to grow organic coatings on NaCl nanoparticles. Aerosolized nanoparticles were mixed with a vapor-phase coating reactant and introduced into a room-temperature, atmospheric-pressure cell, where the mixture was exposed to 172-nm radiation from a Xe2* excimer lamp. Several coating reactants were investigated; the most successful was methyl methacrylate (MMA). Tandem differential mobility analysis (TDMA) was used to determine coating thicknesses as a function of initial particle size. For NaCl particles ranging from 20 to 60 nm in mobility diameter, the thicknesses ranged from sub-nm to 20 nm depending on MMA flow rate and initial particle size.  相似文献   

18.
In order to enhance the compatibility with plastic polymers, magnesium hydroxide sulfate hydrate (MHSH) nanowhiskers were modified through grafting methyl methacrylate (MMA) on the surface of the nanowhiskers by emulsion polymerization. The influences of the reaction time, MMA monomer content, adding speed of monomer and the reaction temperature on the grafting ratio were investigated. Thermogravimetry (TG), Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy and surface contact angle measurement were used to characterize the effect of surface modification. The results showed that the MHSH nanowhiskers were uniformly coated by polymethyl methacrylate (PMMA), and a well-defined core-shell hybrid structure of MHSH/PMMA was obtained. The surface contact angle of the hybrid whiskers increased to 87.32° from 12.71° and the whiskers surface was changed from hydrophilic to lipophilic.  相似文献   

19.
Functionalized crosslinked polystyrene-co-divinylbenzene-co-chloromethylstyrene magnetic latex particles were prepared via emulsifier-free miniemulsion polymerization using 2, 2′ azobis (2-amidinopropane) dihydrochloride (V-50) as an initiator and in the presence of magnetite nanoparticles in the monomers. Transmission electron microscopy (TEM) proved the presence of magnetite nanoparticles in polymer particles. Differential scanning calorimetery (DSC) analysis of the product showed an exothermic signal due to crosslinking of chains through electrophilic aromatic substitution of phenyl groups with chloromethyl groups in the presence of the dispersed Fe3O4 as Lewis acid. This was proven by thermogravimetric analysis (TGA) via the loss of gaseous HCl. The results were also compared with those of magnetite-free miniemulsion polymerization using V-50.  相似文献   

20.
Novel core–double shell particles with poly(methyl methacrylate-co-butyl acrylate) (PMMA-co-BA) as the cores, poly(methyl methacrylate-co-butyl acrylate-co-methacrylic acid) (PMMA-co-BA-co-MAA) as the inner shells, poly(styrene-co-methyl methacrylate) (PS-co-MMA) as the outer shells were prepared by soap-free emulsion polymerization. The acid–alkali osmotic swelling processes were made before the outer shells wrapped for bigger aperture. The optimal experiment conditions were summarized. The morphology and size of the hollow latex particles were observed by transmission electron microscopy. The results showed that the uniform sizes of the hollow latex particles were about 230 nm. The electrophoretic mobility of them in tetrachloroethylene was 0.91 × 10−10 m2 V−1 s−1, and the Zeta-potential was 5.87 mV. The results showed that the hollow polymer particles can used as background particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号