首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An experimental investigation is presented of a turbulent jet issuing from a round sharp-edged orifice plate (OP) into effectively unbounded surroundings. Planar measurements of velocity were conducted using Particle Image Velocimetry (PIV) in the near and transition regions. The Reynolds number, based on the jet initial diameter and velocity, is approximately 72,000. The instantaneous and mean velocities, Reynolds normal and shear stresses were obtained. The centerline velocity decay and the half-velocity radius were derived from the mean velocity. It is revealed that primary coherent structures occur in the near field of the OP jet and that they are typically distributed asymmetrically with respect to the nozzle axis. Comparison of the present PIV and previous hot-wire measurements for the OP jet suggests that high initial turbulence intensity leads to reduced rates of decay and spread of the mean flow field and moreover a lower rate of variation of the turbulence intensity. Results also show that self-similarity of the mean flow is well established from the transition region while the turbulent statistics are far from self-similar within the measured range to 16 diameters.  相似文献   

2.
An experimental study of a three-dimensional, pressuredriven, attached turbulent boundary-layer flow was made at Mach 0.4. Both the mean velocities and the full Reynolds stress tensor were measured simultaneously by a three-component LDA system. Value of the resultant shear stress to turbulent kinetic energy ratio varied between 0.1 and 0.2 and did not remain constant across the boundary-layer. Slopes of the streamwise and azimuthal mixing length distributions in the wall region were around 0.4 and 1.2, respectively. Skew angle of the turbulent shear stress was larger than skew angle of the velocity gradient.  相似文献   

3.
The investigation deals with the effect of suspended particles on the dissipation of turbulence energy.Additional dissipation is hypothesized as caused by the relative velocity between the particles and the fluid, and by structural changes of turbulence.An extended model for the turbulence energy equation is derived and applied to the case of an axially symmetrical free jet. The governing equations are solved numerically, and the results are compared with experimental data. Reasonably good agreement is obtained.  相似文献   

4.
LDA measurements of the mean velocity in a low Reynolds number turbulent boundary layer allow a direct estimate of the friction velocity U from the value of /y at the wall. The trend of the Reynolds number dependence of / is similar to the direct numerical simulations of Spalart (1988).  相似文献   

5.
Nanoparticle dispersion and coagulation behaviors in a turbulent round jet were studied in this article. An experimental system was designed to generate a uniformly distributed air–nanoparticle two-phase flow in a turbulent round jet. The particle size distribution (PSD) was measured by a scanning mobility particle sizer (SMPS) in the near field of the jet. The particle diameters were nearly constant in the potential core due to the high carrying velocity and laminar characteristic of the flow but grew larger in the region of high turbulence intensities because the vortex structures in the mixing layer promoted coagulation. Furthermore, the migration property of small-sized nanoparticles forced them to be preserved in the potential core also leading to the diameter increase. The comparison of the particle concentration distributions at different sections indicated that the shear layer is the major region for the mixing of particle-laden stream and ambient air. The particle diameters in the axial direction experienced three stages including a slightly changed stage, an increasing stage and a constant stage. The diameter increase should be attributed to turbulence coagulation.  相似文献   

6.
 This paper presents an efficient technique for the characterization of thermal transport properties in turbulent flows. The method is based on the temperature dependence of fluorescence, induced by laser radiation, of an organic dye. The laser-induced fluorescence technique is combined with 2D laser Doppler anemometry, in order to measure in the same sample volume simultaneously and instantaneously the temperature and velocity. The technique is demonstrated on a turbulent heated round jet: the mean and fluctuating dynamic and thermal fields are investigated, and the temperature-velocity cross-correlations are determined in order to characterize the turbulent diffusivity and the turbulent Prandtl number. Received: 30 October 1997/Accepted: 14 July 1998  相似文献   

7.
The motion of oil droplets in a round turbulent air jet is investigated experimentally. Direct information on the droplets' average velocity is obtained by means of a Laser Doppler velocimeter. Average velocity profiles of the droplets are measured along the axis of the jet and transverse to it. The results are compared to the free jet expansion.The jet Reynolds number is in the range 104–105, the droplets' diameters are 50 μm and below and the volume concentration of the oil in the air is 10?6.At the jet exit, the air velocity is higher than the droplets' velocity, at the developed region of the jet the droplets' velocity is found to be higher than the free air jet velocity at the same location. In the radial direction, the velocity profiles of the droplets are self similar and the droplets' velocity is lower than the free air jet velocity at the same location. The droplets' velocity decay along the axis of the jet is slower than the air velocity in the free jet and the two-phase jet is narrower than the submerged free air jet at the same exit velocity.  相似文献   

8.
This paper investigates the impact of the inflow conditions on simulations of a round jet discharging from a wall into a large space. The fluid dynamic characteristics of a round jet are studied numerically. A numerical method based on the control volume approach with collocated grid arrangement is employed. The k-e{k-\varepsilon} model is utilized to approximate turbulent stresses by considering six different inlet conditions. The velocity field is presented, and the rate of decay at the jet centerline is determined. The results showed that inflow conditions had a strong influence on the jet characteristics. This paper also investigates both sharp-edged and contoured nozzles. The effects of velocity, turbulence intensity, turbulence kinetic energy, and turbulence dissipation rate on flow field characteristics are examined. Results showed that the present simulations in both types of nozzles are in good agreement with experiments when considering the appropriate inflow conditions.  相似文献   

9.
The problem of a laser Doppler anemometer's statistical response to the velocity direction of particles scattering in space has been studied for many years. This phenomenon introduces a statistical bias distinct from the classical bias related to velocity fluctuations. Though the latter has corrected some controversial application, the only answer found to counter the angular bias remains, for most experimenters, the utilization of Bragg cells. It is not always possible to use such a device, however, and this is particularly true in supersonic flows. The angular bias, inevitable in this case, shows increased effects when the normal to the fringe plane is inclined with respect to the mean velocity direction. Analysis of the phenomenon in the more complex case of a two-component anemometer and a supersonic flow helps to show how measurements of velocity fluctuations in a boundary layer quite close to the wall may include significant errors because of this bias.  相似文献   

10.
Digital time series hot-wire data, acquired in the near field of a turbulent free jet of air issuing from a sharp-edged isosceles triangular orifice, have been post-processed using a phase-averaging procedure to determine the coherent and random contributions to turbulence statistics. The Reynolds number, based on the equivalent diameter of the orifice, was 1.84×105. It was found that momentum transfer by the Reynolds primary shear stress occurs mainly via the coherent primary shear stress.  相似文献   

11.
Tomographic PIV measurements in a turbulent lifted jet flame   总被引:1,自引:0,他引:1  
Measurements of instantaneous volumetric flow fields are required for an improved understanding of turbulent flames. In non-reacting flows, tomographic particle image velocimetry (TPIV) is an established method for three-dimensional (3D) flow measurements. In flames, the reconstruction of the particles location becomes challenging due to a locally varying index of refraction causing beam-steering. This work presents TPIV measurements within a turbulent lifted non-premixed methane jet flame. Solid seeding particles were used to provide the 3D flow field in the vicinity of the flame base, including unburned and burned regions. Four cameras were arranged in a horizontal plane around the jet flame. Following an iterative volumetric self-calibration procedure, the remaining disparity caused by the flame was less than 0.2 pixels. Comparisons with conventional two-component PIV in terms of mean and rms values provided additional confidence in the TPIV measurements.  相似文献   

12.
In this paper we will use Large Eddy Simulation (LES) to obtain the flow field of a turbulent round jet at a Reynolds number based on the jet orifice velocity of 11000. In the simulations it is assumed that the flow field is incompressible. The acoustic field of the jet is calculated with help of the Lighthill acoustic analogy. The coupling between the flow solver and the acoustic solver is discussed in detail. The Mach number used in the acoustic calculation was equal to 0.6. It is shown that the decay of the jet centerline velocity and centerline rms are in good agreement with experimental data of [12]. Furthermore, it is shown that the influence of the LES modeling on the acoustic field is very small, if the dynamic subgrid model is used.  相似文献   

13.
The turbulent properties of the fiber suspension in a turbulent round jet are numerically simulated and visualized, and some of the results are compared with the experimental data. The effects of the Reynolds number, fiber volume fraction, and aspect ratio are analyzed. The results show that the fiber injection in the flow has a delay effect on the streamwise velocity decay along the jet axis, and such an effect becomes more obvious with the increases in the fiber volume fraction and aspect ratio and the decrease in the Reynolds number. The flow with fibers shows an increase in the streamwise velocity along the radial direction, and the increase magnitude is directly proportional to the fiber volume fraction and aspect ratio and inversely proportional to the Reynolds number. The presence of fibers makes the turbulent kinetic energy and Reynolds stress increase, and the extent increases with the fiber volume fraction, Reynolds number, and fiber aspect ratio.  相似文献   

14.
Effect of different initial conditions on a turbulent round free jet   总被引:1,自引:0,他引:1  
Velocity measurements were made in two jet flows, the first exiting from a smooth contraction nozzle and the second from a long pipe with a fully developed pipe flow profile. The Reynolds number, based on nozzle diameter and exit bulk velocity, was the same (䏪,000) in each flow. The smooth contraction jet flow developed much more rapidly and approached self-preservation more rapidly than the pipe jet. These differences were associated with differences in the turbulence structure in both the near and far fields between the two jets. Throughout the shear layer for x<3d, the peak in the v spectrum occurred at a lower frequency in the pipe jet than in the contraction jet. For x́d, the peaks in the two jets appeared to be nearly at the same frequency. In the pipe jet, the near-field distributions of f(r) and g(r), the longitudinal and transverse velocity correlation functions, differed significantly from the contraction jet. The integral length scale Lu was greater in the pipe jet, whereas Lv was smaller. In the far field, the distributions of f(r) and g(r) were nearly similar in the two flows. The larger initial shear layer thickness of the pipe jet produced a dimensionally lower frequency instability, resulting in longer wavelength structures, which developed and paired at larger downstream distances. The regular vortex formation and pairing were disrupted in the shear layer of the pipe jet. The streamwise vortices, which enhance entrainment and turbulent mixing, were absent in the shear layer of the pipe jet. The formation of large-scale structures should occur much farther downstream in the pipe jet than in the contraction jet.  相似文献   

15.
The results of an experimental investigation into the behavior of unconfined, steady, fully turbulent, two-phase jets are described. A round jet of 25.4 mm in diameter, exit velocity of 20 m/s and containing 80 m beads with a mass density of loading of 1.5% was examined. Mean velocity profiles at several stations, as well as the rms values and velocity cross-correlations for both phases were measured by laser-Doppler velocimetry. It was found that the particles lagged the fluid by 8% near the exit, but later, at 9 jet diameters downstream led it by about 7%. Also, the velocity profiles of the particles were flatter than those of the fluid.  相似文献   

16.
This paper addresses the ability to reliably measure the fluctuating velocity field in variable-viscosity flows (herein, a propane–air mixture), using hot-wire anemometry. Because the latter is sensitive to both velocity and concentration fluctuations, the instantaneous concentration field also needs to be inferred experimentally. To overcome this difficulty, we show that the hot-wire response becomes insensitive to the concentration of the field, when a small amount of neon is added to the air. In this way, velocity measurements can be made independently of the concentration field. Although not necessary to velocity measurements, Rayleigh light-scattering technique is also used to infer the local (fluctuating) concentration, and, therefore, the viscosity of the fluid. Velocity and concentration measurements are performed in a turbulent propane jet discharging into an air–neon co-flow, for which the density and viscosity ratios are 1.52 and 1/5.5, respectively. The Reynolds number (based on injection diameter and velocity) is 15400. These measurements are first validated: the axial decay of the mean velocity and concentration, as well as the lateral mean and RMS profiles of velocity and concentration, is in full agreement with the existing literature. The variable-viscosity flow along the axis of the round jet is then characterized and compared with a turbulent air jet discharging into still air, for which the Reynolds number (based on injection diameter and velocity) is 5400. Both flows have the same initial jet momentum. As mixing with the viscous co-flow is enhanced with increasing downstream position, the viscosity of the fluid increases rapidly for the case of the propane jet. In comparison with the air jet, the propane jet exhibits: (1) a lower local Reynolds number based on the Taylor microscale (by a factor of four); (2) a reduced range of scales present in the flow; (3) the isotropic form of the mean energy dissipation rate is first more enhanced and then drastically diminishes and (4) a progressively increasing local Schmidt number (from 1.36 to 7.5) for increasing downstream positions. Therefore, the scalar spectra exhibit an increasingly prominent Batchelor regime with a ~ k ?1 scaling law. The experimental technique developed herein provides a reliable method for the study of variable-viscosity flows.  相似文献   

17.
 The turbulent, three dimensional and time dependent flow field of a precessing jet is investigated. In the present case the jet precession is generated by mechanically rotating a round jet inclined relative to the axis of rotation. A conditional flow visualisation technique is used to complement three dimensional laser Doppler velocity data, time-averaged and phase-averaged at the frequency of precession. The conditional phase-averaging technique enables phase-averaged velocity contours and vectors to be obtained which reveal flow patterns and structures within the flow field. Time-averaging of the velocity data shows that these structures are significant in that they generate a reverse flow (recirculation) region between the jet and its spinning axis. They are found also to cause a rapid decay of the mean velocity. The characteristics of the precessing jet found here are compared with previous investigations of the same flow and with investigations of other turbulent jets. Received: 17 March 1995/Accepted: 7 December 1995  相似文献   

18.
An experimental investigation of a round turbulent jet emitted perpendicularly from a pipe (or stack) into a crossflow was conducted by means of multi-point simultaneous velocity measurements. The motivation was to extract and characterize the underlying coherent structures within the near wake region of the flow. The velocity signals were obtained with both normal and X hot-wire anemometer probes and analyzed with correlation, spectral and pattern-recognition techniques. The results establish that Kármán-like vortices are shed not only by the stack but also by the jet. These structural features are locked-in and are controlled by the stack diameter.This research was supported by the Natural Sciences and Engineering Research Council of Canada through Grant A-2746. We would also like to thank J.A. Ferré and F. Giralt for the use of their pattern-recognition programs.  相似文献   

19.
Simultaneous DPTV/PLIF measurements of a turbulent jet   总被引:5,自引:0,他引:5  
Simultaneous measurements of instantaneous velocity and concentration fields were performed using digital particle tracking velocimetry and planar laser- induced fluorescence for a turbulent jet at a Reynolds number of 3000. The measurements of mean velocity, turbulent stresses, mean concentration, concentration variance, and turbulent flux of tracer all collapse onto self-similar profiles in the far field of the jet. The measurements showed excellent agreement with previous point velocity and concentration measurements. It is concluded that the system is an effective means of measuring the velocity and concentration distributions and turbulent characteristics. Received: 7 July 1999/Accepted: 9 February 2000  相似文献   

20.
Tomographic particle image velocimetry (Tomo-PIV) was applied on a turbulent round air jet to quantitatively assess the accuracy of velocity gradients obtained in the self-similar turbulent region. The jet Reynolds number based on the nozzle diameter (d) was Red = 3000. Mean velocity, turbulent intensities, and Reynolds shear stress at the center plane of the jet were measured. In addition, statistical results of Tomo-PIV along the axial direction were assessed by performing a separate set of two-dimensional two-component PIV experiments on a “side view” plane along the jet axis. Moreover, the probability distribution functions of four components of the measured velocity gradients in the axial and radial directions were validated by these “side view” planar PIV data. The root mean square of the velocity divergence values relative to the norm of the velocity gradient tensor was 0.36. Furthermore, the on- and off-diagonal components of the velocity gradients satisfied the axisymmetric isotropy conditions. The divergence error in the data affected only areas with low gradient magnitude. Therefore, turbulent structures in the regions with intense vorticity and dissipation can be closely monitored. On this basis, the joint pdfs of the invariants of the velocity gradient and strain and rotation tensor rates were produced and compared well with those in isotropic turbulence studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号