首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超音速气流中受热曲壁板的非线性颤振特性   总被引:3,自引:0,他引:3  
基于von Karman 大变形理论及带有曲率修正的一阶活塞理论, 用Galerkin方法建立了超音速气流中受热二维曲壁板的非线性气动弹性运动方程; 采用牛顿迭代法计算得到由静气动载荷和热载荷引起的静气动弹性变形; 根据李雅谱诺夫间接法分析了壁板初始曲率与温升对颤振边界的影响; 对二维曲壁板的非线性气动弹性方程组进行数值积分求解,分析了动压参数对受热二维曲壁板分岔特性的影响, 给出了典型状态下曲壁板非线性颤振响应的时程图与相图. 分析结果表明对小初始曲率的曲壁板, 温升对其静气动弹性变形影响较大, 且随着温升的增加其颤振临界动压急剧减小; 对具有较大初始曲率的曲壁板, 温升对其静气动弹性变形的影响较弱, 且随着温升的增加颤振临界动压基本保持不变. 初始几何曲率与气动热效应使得曲壁板具有复杂的动力学特性, 不再像平壁板一样, 经过倍周期分岔进入混沌, 而会出现由静变形状态直接进入混沌运动的现象, 且在混沌运动区域中还会出现静态稳定点或谐波运动, 在大曲率情况下, 曲壁板不会产生混沌运动, 而是幅值在一定范围内的极限带振荡.   相似文献   

2.
Nonlinear dynamic behaviors of an aeroelastic airfoil with free-play in transonic air flow are studied. The aeroelastic response is obtained by using time-marching approach with computational fluid dynamics (CFD) and reduced order model (ROM) techniques. Several standardized tests of transonic flutter are presented to validate numerical approaches. It is found that in time-marching approach with CFD technique, the time-step size has a significant effect on the calculated aeroelastic response, especially for cases considering both structural and aerodynamic nonlinearities. The nonlinear dynamic behavior for the present model in transonic air flow is greatly different from that in subsonic regime where only simple harmonic oscillations are observed. Major features of the responses in transonic air flow at different flow speeds can be summarized as follows. The aeroelastic responses with the amplitude near the free-play are dominated by single degree of freedom flutter mechanism, and snap-though phenomenon can be observed when the air speed is low. The bifurcation diagram can be captured by using ROM technique, and it is observed that the route to chaos for the present model is via period-doubling, which is essentially caused by the free-play nonlinearity. When the flow speed approaches the linear flutter speed, the aeroelastic system vibrates with large amplitude, which is dominated by the aerodynamic nonlinearity. Effects of boundary layer and airfoil profile on the nonlinear responses of the aeroelastic system are also discussed.  相似文献   

3.
Based on the piston theory of supersonic flow and the energy method, a two dimensional wing with a control surface in supersonic flow is theoretically modeled, in which the cubic stiffness in the torsional direction of the control surface is considered. An approximate method of the cha- otic response analysis of the nonlinear aeroelastic system is studied, the main idea of which is that under the condi- tion of stable limit cycle flutter of the aeroelastic system, the vibrations in the plunging and pitching of the wing can approximately be considered to be simple harmonic excita- tion to the control surface. The motion of the control surface can approximately be modeled by a nonlinear oscillation of one-degree-of-freedom. The range of the chaotic response of the aeroelastic system is approximately determined by means of the chaotic response of the nonlinear oscillator. The rich dynamic behaviors of the control surface are represented as bifurcation diagrams, phase-plane portraits and PS diagrams. The theoretical analysis is verified by the numerical results.  相似文献   

4.
A bifurcation analysis of a two-dimensional airfoil with a structural nonlinearity in the pitch direction and subject to incompressible flow is presented. The nonlinearity is an analytical third-order rational curve fitted to a structural freeplay. The aeroelastic equations-of-motion are reformulated into a system of eight first-order ordinary differential equations. An eigenvalue analysis of the linearized equations is used to give the linear flutter speed. The nonlinear equations of motion are either integrated numerically using a fourth-order Runge-Kutta method or analyzed using the AUTO software package. Fixed points of the system are found analytically and regions of limit cycle oscillations are detected for velocities well below the divergent flutter boundary. Bifurcation diagrams showing both stable and unstable periodic solutions are calculated, and the types of bifurcations are assessed by evaluating the Floquet multipliers. In cases where the structural preload is small, regions of chaotic motion are obtained, as demonstrated by bifurcation diagrams, power spectral densities, phase-plane plots and Poincaré sections of the airfoil motion; the existence of chaos is also confirmed via calculation of the Lyapunov exponents. The general behaviour of the system is explained by the effectiveness of the freeplay part of the nonlinearity in a complete cycle of oscillation. Results obtained using this reformulated set of equations and the analytical nonlinearity are in good agreement with previously obtained finite difference results for a freeplay nonlinearity.  相似文献   

5.
The weakly nonlinear resonant response of an orthogonal double pendulum to planar harmonic motions of the point of suspension is investigated. The two pendulums in the double pendulum are confined to two orthogonal planes. For nearly equal length of the two pendulums, the system exhibits 1:1 internal resonance. The method of averaging is used to derive a set of four first order autonomous differential equations in the amplitude and phase variables. Constant solutions of the amplitude and phase equations are studied as a function of physical parameters of interest using the local bifurcation theory. It is shown that, for excitation restricted in either plane, there may be as many as six pitchfork bifurcation points at which the nonplanar solutions bifurcate from the planar solutions. These nonplanar motions can become unstable by a saddle-node or a Hopf bifurcation, giving rise to a new branch of constant solutions or limit cycle solutions, respectively. The dynamics of the amplitude equations in parameter regions of the Hopf bifurcations is then explored using direct numerical integration. The results indicate a complicated amplitude dynamics including multiple limit cycle solutions, period-doubling route to chaos, and sudden disappearance of chaotic attractors.  相似文献   

6.
Lee  Won Kyoung  Park  Hae Dong 《Nonlinear dynamics》1997,14(3):211-229
An investigation into chaotic responses of a weakly nonlinear multi-degree-of-freedom system is made. The specific system examined is a harmonically excited spring pendulum system, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. By the method of multiple scales the original nonautonomous system is reduced to an approximate autonomous system of amplitude and phase variables. The approximate system is shown to have Hopf bifurcation and a sequence of period-doubling bifurcations leading to chaotic motions. In order to examine what happens in the original system when the approximate system exhibits chaos, we compare the largest Lyapunov exponents for both systems.  相似文献   

7.
Forced, weakly nonlinear oscillations of a two degree-of-freedom autoparametric vibration absorber system are studied for resonant excitations. The method of averaging is used to obtain first-order approximations to the response of the system. A complete bifurcation analysis of the averaged equations is undertaken in the subharmonic case of internal and external resonance. The locked pendulum mode of response is found to bifurcate to coupled-mode motion for some excitation frequencies and forcing amplitudes. The coupled-mode response can undergo Hopf bifurcation to limit cycle motions, when the two linear modes are mistuned away from the exact internal resonance condition. The software packages AUTO and KAOS are used and a numerically assisted study of the Hopf bifurcation sets, and dynamic steady solutions of the amplitude or averaged equations is presented. It is shown that both super-and sub-critical Hopf bifurcations arise and the limit cycles quickly undergo period-doubling bifurcations to chaos. These imply chaotic amplitude modulated motions for the system.  相似文献   

8.
Dynamical analysis of axially moving plate by finite difference method   总被引:1,自引:0,他引:1  
The complex natural frequencies for linear free vibrations and bifurcation and chaos for forced nonlinear vibration of axially moving viscoelastic plate are investigated in this paper. The governing partial differential equation of out-of-plane motion of the plate is derived by Newton’s second law. The finite difference method in spatial field is applied to the differential equation to study the instability due to flutter and divergence. The finite difference method in both spatial and temporal field is used in the analysis of a nonlinear partial differential equation to detect bifurcations and chaos of a nonlinear forced vibration of the system. Numerical results show that, with the increasing axially moving speed, the increasing excitation amplitude, and the decreasing viscosity coefficient, the equilibrium loses its stability and bifurcates into periodic motion, and then the periodic motion becomes chaotic motion by period-doubling bifurcation.  相似文献   

9.
随机激励对软弹簧杜芬振子动力学的分散作用   总被引:4,自引:0,他引:4  
郭云松  甘春标  叶敏 《应用力学学报》2005,22(2):285-287,i012
讨论了有界噪声激励对软弹簧杜芬振子的倍周期分岔至混沌运动的影响。利用蒙特卡罗方法,通过对系统受侵蚀安全盆的变化状况进行了观察,并由此对后继动力学分析的初始点进行了选取。系统的相图、倍周期分岔图以及庞加莱映射图等方面的数值结果表明,外加随机激励的作用往往掩盖原确定性系统内在的规则运动,对原确定性系统的运动具有较典型的分散作用,可延缓系统的倍周期分岔,也可使得系统内在随机行为提前发生,即可使得系统更容易出现混沌运动。  相似文献   

10.
We consider an autoparametric system consisting of an oscillator coupled with an externally excited subsystem. The oscillator and the subsystem are in one-to-one internal resonance. The excited subsystem is in primary resonance. The method of second-order averaging is used to obtain a set of autonomous equations of the second-order approximations to the externally excited system with autoparametric resonance. The Šhilnikov-type homoclinic orbits and chaotic dynamics of the averaged equations are studied in detail. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Šhilnikov-type homoclinic orbits in the averaged equations. The results obtained above mean the existence of the amplitude-modulated chaos for the Smale horseshoe sense in the externally excited system with autoparametric resonance. Furthermore, a detailed bifurcation analysis of the dynamic (periodic and chaotic) solutions of the averaged equations is presented. Nine branches of dynamic solutions are found. Two of these branches emerge from two Hopf bifurcations and the other seven are isolated. The limit cycles undergo symmetry-breaking, cyclic-fold and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging and boundary crises. Simultaneous occurrence of the limit cycle and chaotic attractors, homoclinic orbits, intermittency chaos and homoclinic explosions are also observed.  相似文献   

11.
In this paper, an airfoil-based piezoaeroelastic energy harvesting system is proposed with an additional supporting device to harvest the mechanical energy from the leadlag motion. A dimensionless dynamic model is built considering the large-effective-angle-of-attack vibrations causing (1) the nonlinear coupling between the pitch–plunge–leadlag motions, (2) the inertia nonlinearity, and (3) the aerodynamic nonlinearity modeled by the ONERA dynamic stall model. Cubic hardening stiffness is introduced in the pitch degree of freedom for persistent vibrations with acceptable amplitude beyond the flutter boundary. The nonlinear aeroelastic response and the average power output are numerically studied. Limit cycle oscillations are observed and, as the flow velocity exceeds a secondary critical speed, the system experiences complex vibrations. The power output from the leadlag motion is smaller than that from the plunge motion, whereas the gap is narrowed with increasing flow velocity. Case studies are performed toward the effects of several dimensionless system parameters, including the nonlinear torsional stiffness, airfoil mass eccentricity, airfoil radius of gyration, mass of the supporting devices, and load resistances in the external circuits. The optimal parameter values for the power outputs from the plunge and leadlag motions are, respectively, obtained. Beyond the secondary critical speed, it is shown that the variations of the power outputs with those parameters become irregular with fluctuations and multiple local maximums. The bifurcation analysis shows the mutual transitions between the limit cycle oscillations, multi-periodic vibrations, and possible chaos. The influences of these complex vibrations on the power outputs are discussed.  相似文献   

12.
非自治时滞反馈控制系统的周期解分岔和混沌   总被引:9,自引:0,他引:9  
徐鉴  陆启韶 《力学学报》2003,35(4):443-451
研究时滞反馈控制对具有周期外激励非线性系统复杂性的影响机理,研究对应的线性平衡态失稳的临界边界,将时滞非线性控制方程化为泛函微分方程,给出由Hopf分岔产生的周期解的解析形式.通过分析周期解的稳定性得到周期解的失稳区域,使用数值分析观察到时滞在该区域可以导致系统出现倍周期运动、锁相运动、概周期运动和混沌运动以及两条通向混沌的道路:倍周期分岔和环面破裂.其结果表明,时滞在控制系统中可以作为控制和产生系统的复杂运动的控制“开关”.  相似文献   

13.
张伟伟  王博斌  叶正寅 《力学学报》2010,42(6):1023-1033
事先建立一个低阶的非线性、非定常气动力模型是开展非线性流场中气动弹性问题研究的一个捷径. 基于CFD方法, 通过计算结构在流场中自激振动的响应来获得系统的训练数据. 采用带输出反馈的循环RBF神经网络, 建立时域非线性气动力降阶模型.耦合结构运动方程和非线性气动力降阶模型, 采用杂交的线性多步方法计算结构在不同速度(动压)下的响应历程, 从而获得模型极限环随速度(动压)变化的特性. 两个典型的跨音速极限环型颤振算例表明, 基于气动力降阶模型方法的计算结果与直接CFD仿真结果吻合很好, 与后者相比其将计算效率提高了1~2个数量级.   相似文献   

14.
The chaotic vibrations of a bimetallic shallow shell of revolution under time-varying temperature excitation are investigated in the present study. The governing equations are established in forms similar to those of classical single-layered shell theory by re-determination of reference surface. The nonlinear differential equation in time-mode is derived by variational method following an assumed spatial-mode. The Melnikov function is established theoretically to estimate regions of the chaos, and the Poincaré map, phase portrait, Lyapunov exponent, and Lyapunov dimension are used to determine if a chaotic motion really appears. Further investigations are developed by means of detailed numerical simulation, and both the bifurcation diagrams and corresponding maximum Lyapunov exponent are illustrated. The influence of static and time-dependent temperature parameters, height parameter of the shell, and damping parameter on the dynamic characteristics is examined. Interesting phenomena such as the onset of chaos, transient chaotic motion, chaos with interior crisis and period window, period-doubling scenario and reversed period-doubling bifurcation leading to chaos, jump phenomena, and chaos suddenly converting to period orbit have been observed from these figures.  相似文献   

15.
In this paper, the dynamics of a cantilevered articulated system of rigid cylinders interconnected by rotational springs, within a pipe containing fluid flow is studied. Although the formulation is generalized to any number of degrees-of-freedom (articulations), the present work is restricted to three-degree-of-freedom systems. The motions are considered to be planar, and the equations of motion, apart from impacting terms, are linearized. Impacting of the articulated cylinder system on the outer pipe is modelled by either a cubic spring (for analytical convenience) or, more realistically, by a trilinear spring model. The critical flow velocities, for which the system loses stability, by flutter (Hopf bifurcation) or divergence (pitchfork bifurcation) are determined by an eigenvalue analysis. Beyond these first bifurcations, it is shown that, for different values of the system parameters, chaos is obtained through three different routes as the flow is incremented: a period-doubling cascade, the quasiperiodic route, and type III intermittency. The dynamical behaviour of the system and differing routes to chaos are illustrated by phase-plane portraits, bifurcation diagrams, power spectra, Poincaré sections, and Lyapunov exponent calculations.  相似文献   

16.
热环境下壁板非线性颤振分析   总被引:3,自引:1,他引:2  
基于一阶活塞气动力理论,采用Von Karman大变形应变-位移关系建立了无限展长壁板热环境下颤振方程,采用伽辽金方法对方程进行离散处理.取温度为分叉参数,研究壁板颤振时的分叉及混沌等复杂动力学特性.结果表明:温度载荷降低了系统的颤振临界动压,改变了颤振特性.在整个分岔参数范围内,系统呈现出较为复杂的变化,包括衰减振动、极限环振动、拟周期振动和混沌型振动.当考虑材料热效应时,系统的颤振动压将进一步降低,其响应也表现出更为丰富的非线性动态力学行为.  相似文献   

17.
In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.  相似文献   

18.
Dynamic behavior of panels exposed to subsonic flow subjected to external excitation is investigated in this paper. The von Karman’s large deflection equations of motion for a flexible panel and Kelvin’s model of structural damping is considered to derive the governing equation. The panel under study is two-dimensional and simply supported. A Galerkin-type solution is introduced to derive the unsteady aerodynamic pressure from the linearized potential equation of uniform incompressible flow. The governing partial differential equation is transformed to a series of ordinary differential equations by using Galerkin method. The aeroelastic stability of the linear panel system is presented in a qualitative analysis and numerical study. The fourth-order Runge-Kutta numerical algorithm is used to conduct the numerical simulations to investigate the bifurcation structure of the nonlinear panel system and the distributions of chaotic regions are shown in the different parameter spaces. The results shows that the panel loses its stability by divergence not flutter in subsonic flow; the number of the fixed points and their stabilities change after the dynamic pressure exceeds the critical value; the chaotic regions and periodic regions appear alternately in parameter spaces; the single period motion trajectories change rhythmically in different periodic regions; the route from periodic motion to chaos is via doubling-period bifurcation.  相似文献   

19.
INSTABILITY AND CHAOS IN A PIPE CONVEYING FLUID WITH ADDED MASS AT FREE END   总被引:1,自引:0,他引:1  
This paper shows the mechanism of instability and chaos in a cantilevered pipe conveying steady fluid. The pipe under consideration has added mass or a nozzle at the free end. The Galerkin method is used to transform the original system into a set of ordinary differential equations and the standard methods of analysis of the discrete system are introduced to deal with the instability. With either the nozzle parameter or the flow velocity increasing, a route to chaos can be observed very clearly: the pipe undergoing buckling (pitchfork bifurcation), flutter (Hopf bifurcation), doubling periodic motion (pitchfork bifurcation) and chaotic motion occurring finally. The project supported by the National Key Projects of China under grant No. PD9521907 and Science Foundation of Tongji University under grant No. 1300104010.  相似文献   

20.
In this paper, the dynamics of two-dimensional cantilevered flexible plates in axial flow is investigated using a fluid–structure interaction model. An additional spring support of either linear or cubic type is installed at various locations on the plate; its presence qualitatively affects the dynamics of the fluid–structure system. Without the spring, the cantilevered plate loses stability by flutter when the flow velocity exceeds a critical value; as the flow velocity increases further, the system dynamics is qualitatively the same: the plate undergoes symmetric limit cycle oscillations with increasing amplitude. With a linear spring, a state of static buckling is added to the dynamics. Rich nonlinear dynamics can be observed when a cubic spring is considered; the plate may be stable and buckled, and it may undergo either symmetric or asymmetric limit cycle oscillations. Moreover, when the flow velocity is sufficiently high, the plate may exhibit chaotic motions via a period-doubling route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号