首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Literature data from in vivo chest measurements and urinary excretion rates of individuals exposed to U3O8 and UO2 were used to compare the results predicted by different models with empirical observations in humans. As a result the use of the respiratory tract model proposed in ICRP Publication 66 with its default absorption parameters underestimates urinary excretion of inhaled U3O8 and UO2. The new respiratory tract model also overpredicts the Fecal/Urine activity ratio, independently of the systemic model. For U3O8 and UO2 the choice of systemic model has very little influence on the predicted urinary excretion of inhaled compounds. On the other way, the choice of the respiratory tract model does influence the predicted urinary excretion significantly. In this work specific absorption parameters for U3O8 and UO2 were derived to be used in the respiratory tract model proposed in ICRP Publication 66. The predicted biokinetics of these compounds were compared with those derived for Type M and Type S compounds of uranium.  相似文献   

2.
The vibrational spectrum of trifluorotrichlorodisiloxane (F3SiOSiCl3) is reported, analyzed and assigned in terms of a linear C3v model, by comparison with that of structurally related hexachlorodisiloxane (Cl3SiOSiCl3). This is the first assignment of the vibrational spectrum for this molecule. The vibrational spectrum of Cl3SiOSiCl3 is assigned on the basis of a linear D3d model, which is different from a bent C2v model in the previous literature.  相似文献   

3.
A thermodynamic model for the prediction of CO2 hydrate phase stability conditions in the presence of pure and mixed salts solutions and various ionic liquids (ILs) is developed. In the proposed model van der Waals and Platteeuw model is used to compute the hydrate phase, Peng–Robinson equation of state (PR-EoS) for the gas phase and the Pitzer–Mayorga–Zavitsas-Hydration model is employed to calculate the water activity in the liquid water phase. This model is an extension of the model developed by Tumba et al. (2011) for the prediction of methane and CO2 hydrate phase stability conditions in the presence of tributylmethylphosphonium methylsulfate IL solution. Shabani et al. (2011) mixing rule is modified by incorporating the water–inhibitor (salt/IL) interaction parameter to calculate the water activity in mixed salt solutions. The model predictions are also calculated using the Pitzer–Mayorga model separately and compared with predictions of the developed model. The model predictions are compared with experimental results on the phase stability of CO2 hydrate in the presence of ILs, pure and mixed salts as reported in literatures. The ILs are chosen from imidazolium cationic family with various anion groups such as bromide (Br), tetrafluoroborate (BF4), trifluoromethanesulfonate (TfO), and nitrate (NO3) and the common salts such as NaCl, KCl and CaCl2. Good agreement between the developed model predictions and the literature data is observed. The overall average absolute deviation (AARD%) with Pitzer–Mayorga–Zavitsas-Hydration model is observed to be within ±1.36% while Pitzer–Mayorga model accuracy were about ±1.44 %. Further, the model is extended to calculate the inhibition effect of selected inhibitors (ILs and salts) on CO2 hydrate formation.  相似文献   

4.
We established a gas-phase, elementary reaction model for chemical vapor deposition of silicon carbide from methyltrichlorosilane (MTS) and H2, based on the model developed at Iowa State University (ISU). The ISU model did not reproduce our experimental results, decomposition behavior of MTS in the gas phase in an environment with H2. Therefore, we made several modifications to the ISU model. Of the reactions included in existing models, 236 were lacking in the ISU model, and thus were added to the model. In addition, we modified the rate constants of the unimolecular reactions and the recombination reactions, which were treated as a high-pressure limit in the ISU model, into pressure-dependent rate expressions based on the previous reports (to yield the ISU+ model), for example, H2(+M) → H + H(+M), but decomposition behavior remained poorly reproducible. To incorporate the pressure dependencies of unimolecular decomposition rate constants, and to increase the accuracies of these constants, we recalculated the rate constants of five unimolecular decomposition reactions of MTS using the Rice-Ramsperger-Kassel-Marcus method at the CBS-QB3 level. These chemistries were added to the ISU+ model to yield the UT2014 model. The UT2014 model reproduced overall MTS decomposition. From the results of our model, we confirmed that MTS mainly decomposes into CH3 and SiCl3 at the temperature around 1000°C as reported in the several studies.  相似文献   

5.
Two models for the permeability of pure gases have been extended to include binary gas mixtures. The first is an extension of a pure gas permeability model, proposed by Petropoulos, which is based on gradients of chemical potential. This model predicts the permeability of components in a gas mixture solely on the basis of competition for sorption sites within the polymer matrix. The second mixed gas model follows an earlier analysis by Barrer for pure gases which includes the effects of saturation of Langmuir sites on the diffusion as well as the sorption processes responsible for permeation. This generalized “competitive sorption/diffusion” model includes the effect of each gas component on the sorption and diffusion of the other component in the mixture. The flux equations from these two models have been solved numerically to predict the permeability of gas mixtures on the basis of pure gas sorption and transport parameters. Both the mixed gas Petropoulos and competitive sorption/diffusion model predictions are compared with predictions from the earlier simple competitive sorption model based on gradients of concentration. An analysis of all three models is presented for the case of CO2/CH4 permeability in poly(phenylene oxide) (PPO). As expected, the competitive sorption/diffusion model predicts lower permeability than either of the models which consider only competitive sorption effects. The permeability depression of both CO2 and CH4 predicted by the competitive sorption/diffusion model is roughly twice that predicted by the competitive sorption model, whereas the mixed gas Petropoulos model predictions for both gases lie between the other two model predictions. For the PPO/CO2/CH4 system, the methane permeability data lie above the predictions of all three models, whereas CO2 data lie below the predictions of all models. Consequently, the competitive sorption/diffusion model gives the most accurate prediction for CO2, while the simple competitive sorption model is best for methane. The effects of mixed gas sorption, fugacity, and CO2-induced dilation were considered and do not explain the inaccuracies of any of the models. The relatively small errors in mixed gas permeability predictions using either of the three models are likely to be related to “transport plasticization” of PPO owing to high levels of CO2 sorption and its effect on polymer segmental motions and gas diffusivity.  相似文献   

6.
7.
A stochastic model of triplet yields is considered where the singlet S1 is initially excited and subsequently feeds the triplet T1. Both S1 and T1 have Montroll—Shuler step ladder vibrational relaxation mechanisms and radiative and non-radiative decay rates that vary linearly with increasing vibrational energy. Assuming the S1 → T1 rates also have this linear variation, the kinetic model is exactly solved in terms of integrals of simple functions of hyperbolic functions. The predictions of the model are illustrated by application to naphthalene. The model parameters are chosen; wherever possible, from experimental data. The predictions are in gross qualitative agreement with available experiments on triplet yields, and they indicate more detailed future experiments to separate the S1 → T1 and S1 → S0 (ground singlet) decays (and their energy dependence) in aromatic hydrocarbons.  相似文献   

8.
A dynamic kinetic model for the oxidation of phenol in water by an UV/H2O2 process is developed. The model is based on the elementary chemical and photochemical reactions, initiated by the photolysis of hydrogen peroxide into hydroxyl radicals. The model is validated by using experimental data obtained from the open literature for an actual UV/H2O2 process. Using those data and the developed kinetic model, kinetic rate constants for phenol intermediates, catechol and hydroquinone, are estimated. Moreover, the optimum initial hydrogen peroxide concentration is estimated by means of the validated model. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 40: 34–43, 2008  相似文献   

9.
A computer model is developed for describing argon/nitrogen glow discharges. The species taken into account in the model include electrons, Ar atoms in the ground state and in the 4s metastable levels, N2 molecules in the ground state and in six different electronically excited levels, N atoms, Ar+ ions, N+, N2+, N3+ and N4+ ions. The fast electrons are simulated with a Monte Carlo model, whereas all other species are treated in a fluid model. 74 different chemical reactions are considered in the model. The calculation results include the densities of all the different plasma species, as well as information on their production and loss processes. The effect of different N2 additions, in the range between 0.1 and 10%, is investigated.  相似文献   

10.
11.
The adsorption energy of a CO2 molecule on various sites of the (100) face of NACl is determined (i) by considering the molecule in the electrostatic field created by the substrate, and (ii) by treating the cluster (CO2Cl2)2? in the field created by the rest of the substrate. The electrostatic and polarization contributions are obtained by means of the SCF method. The dispersion-repulsion term is successively estimated by means of the hard-sphere model and an adapted potential model. Whatever the model used, the calculated adsorption energy is in the range 6–10 kcal/mole; this is in acceptable agreement with experiment. However, only the cluster model gives the correct splitting of the ν2 frequency of CO2.  相似文献   

12.
13.
《Fluid Phase Equilibria》2004,215(2):151-161
The new experimental data of liquid–liquid equilibria for aqueous two-phase systems PEG–K2HPO4–water and PEG–Na2SO4–water are presented. The effects of pH and molecular weight of polyethylene glycol were investigated and the tie lines with binodal curves for both systems are shown. A new thermodynamic model based on group contribution has been proposed for studying the phase behavior of aqueous two-phase polymer–salt systems. The assumptions of NRTL-NRF model and the activity coefficient equation of UNIQUAC-NRF model have been used for the groups. In this new model, UNIFAC-NRF, the nonrandom state of groups were selected as a reference state. The binary interaction parameters were adjusted using the data of binary salt–water systems and the ternary systems were correlated with only six binary adjustable parameters. The Debye–Huckel equation based on Fowller–Guggenheim equation was used to calculate the long range electrostatic interaction of the ions. The UNIFAC-NRF model was applied to correlate the experimental data of aqueous two-phase systems: PEG–K2HPO4–water and PEG–Na2SO4–water for two different molecular weight of PEG at different pH. The results of the new model showed that it can be used to correlate the LLE in aqueous solution of polymer–salt very well.  相似文献   

14.
By using the Amsterdam Density Functional program, we have studied the geometric features, stabilities and magnetic properties of AlnCu (n = 1–19) clusters. The magnetic structures of Al17Cu2 and Al19Cu clusters are found. Although the high spin ground state of Al12Cu cluster is in accordance with the Hund’s rule under spherical Jellium model (SJM), it is difficult to explain why the Al17Cu2 and Al19Cu clusters exhibit larger magnetic moments by the model. A superatom model under equivalent charge distribution is proposed. The magnetic properties of the Cu-doped Al clusters can be explained well by combination of the superatom model with SJM.  相似文献   

15.
An analytical solution has been obtained for the modified dual-mode mobility model for a single gas proposed by Zhou and Stern and extended to a binary gas mixture to describe the pressure dependence of mean permeability coefficients for CO2 and CH4 mixtures in homogeneous cellulose triacetate membranes. The permeabilities calculated from the model fitted the corresponding experimental results quite well. Permeation experiments for equimolar CO2 and CH4 mixture in a homogeneous membrane of methyl methacrylate and n-sbutyl acrylate copolymer were performed along with sorption experiments for pure CO2 and CH4 to test the applicability of the model. The experimental permeabilities were close to those calculated from the model.  相似文献   

16.
The crystal structure of l ‐aspartic acid, C4H7NO4, has been determined using two types of refinement, viz. the standard independent atom model (IAM) and the experimental library multipolar atom model (ELMAM). The ELMAM refinement shows a good improvement of the statistical indices compared with the IAM model, notably in terms of thermal displacement parameters and bond distances involving H atoms.  相似文献   

17.
18.
In this work, a corrosion prediction mathematical model for risk assessment in oil and gas production and transportation facilities has been created. This work focuses on partial pressure of carbon (iv) oxide, CO2 and the operating temperature in process equipment and transportation facility pipes as a function of corrosion rate. The model equation formulated was based on the principle of multiple linear regressions of data. The final model representing the corrosion rate of crude oil equipment was obtained CR = b o + b 1 T + b 2 P (CO 2). The model was simulated using polymath software. The correlation between the experimental and simulated resulted obtained using root mean square deviation (coefficient of determination) was 99.74% which is high, suggesting that the relationship between the predictor and response variables is linear. The variation in the model equation is 0.0066374. This low value of the variance shows that the model is accurate.  相似文献   

19.
Abstract

In this study, the atomic force microscopy colloidal probe technique was employed to investigate the interaction between apolar, basic and acidic model oil probes and a calcite surface in solutions containing different concentrations of NaCl, CaCl2 and Na2SO4. In the presence of SO42?, hydration and structural forces were observed between apolar model oil probes and a calcite surface on approach. Relatively low adhesion forces were observed between the basic model oil probes and the calcite surface, while higher adhesion forces were observed between the acidic model oil probes and the calcite surface. Furthermore, the adhesion forces between the basic model oil probes and the calcite surface significantly increased in the presence of SO42?, while the adhesion force between the acidic model oil probes and the calcite surface decreased in the presence of Ca2+ or SO42?. The differences in the adhesion forces are related to electrostatic attraction and ion bridging forces between the model oil probes and the calcite surface.  相似文献   

20.
The Raman bandwidths and the frequency shifts of the ν12(A1) mode and the IR ν3(OH) stretching mode of phenol and phenol-OD have been measured as a function of concentration in benzonitrile and benzene solutions. Opposite isotope effects of deuterium substitution in the hydroxyl group of phenol on the bandwidths of the ν12 and the ν3(OH) modes have been found. The experimental bandwidths are discussed in terms of available theoretical models for dephasing and other mechanisms of broadening. The isolated binary collision dephasing model of Fischer-Laubereau, the Knapp-Fischer concentration-fluctuation model and the Robertson-Yarwood model have been tested. It has been stated that the purely repulsive potential is responsible for vibrational dephasing of the ν12 mode of phenol in benzene while the concentration-fluctuation model reproduces the experimental data for that mode in benzonitrile. The coupling between the ν3(OH) and ν2(OH…N) modes is the dominant mechanism for broadening of the ν3(OH) mode of phenol in benzonitrile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号