首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
The stable Kneser graph SGn,k, n?1, k?0, introduced by Schrijver (1978) [19], is a vertex critical graph with chromatic number k+2, its vertices are certain subsets of a set of cardinality m=2n+k. Björner and de Longueville (2003) [5] have shown that its box complex is homotopy equivalent to a sphere, Hom(K2,SGn,k)?Sk. The dihedral group D2m acts canonically on SGn,k, the group C2 with 2 elements acts on K2. We almost determine the (C2×D2m)-homotopy type of Hom(K2,SGn,k) and use this to prove the following results.The graphs SG2s,4 are homotopy test graphs, i.e. for every graph H and r?0 such that Hom(SG2s,4,H) is (r−1)-connected, the chromatic number χ(H) is at least r+6.If k∉{0,1,2,4,8} and n?N(k) then SGn,k is not a homotopy test graph, i.e. there are a graph G and an r?1 such that Hom(SGn,k,G) is (r−1)-connected and χ(G)<r+k+2.  相似文献   

2.
Let W n = K 1 ? C n?1 be the wheel graph on n vertices, and let S(n, c, k) be the graph on n vertices obtained by attaching n-2c-2k-1 pendant edges together with k hanging paths of length two at vertex υ 0, where υ 0 is the unique common vertex of c triangles. In this paper we show that S(n, c, k) (c ? 1, k ? 1) and W n are determined by their signless Laplacian spectra, respectively. Moreover, we also prove that S(n, c, k) and its complement graph are determined by their Laplacian spectra, respectively, for c ? 0 and k ? 1.  相似文献   

3.
Let k1, k2,…, kn be given integers, 1 ? k1 ? k2 ? … ? kn, and let S be the set of vectors x = (x1,…, xn) with integral coefficients satisfying 0 ? xi ? ki, i = 1, 2, 3,…, n. A subset H of S is an antichain (or Sperner family or clutter) if and only if for each pair of distinct vectors x and y in H the inequalities xi ? yi, i = 1, 2,…, n, do not all hold. Let |H| denote the number of vectors in H, let K = k1 + k2 + … + kn and for 0 ? l ? K let (l)H denote the subset of H consisting of vectors h = (h1, h2,…, hn) which satisfy h1 + h2 + … + hn = l. In this paper we show that if H is an antichain in S, then there exists an antichain H′ in S for which |(l)H′| = 0 if l < K2, |(K2)H′| = |(K2)H| if K is even and |(l)H′| = |(l)H| + |(K ? l)H| if l>K2.  相似文献   

4.
Let (ks) denote the set of all k-element-subsets of a finite set S. A k-simplical matroid on a subset E of (ks) is a binary matroid the circuit of which are simplicial complexes {X1,…Xm} ? E with boundary 0 (mod 2). The k-simplical matroid on (ks) is called the full simplicial matroid Gk(S). The polygon matroid on the edges of a finite graph is 2-simplicial. Polygon-matroids and their duals are regular. The dual of Gk(S) is Gn?k(S) if the cardinnlity of S is n. More details on simplicial matroids can be found in [3, Chapter 6] and also in [4, pp. 180–181].Welsh asked if every simplicial matroid is regular. We prove that this is not the case, for all full k-simplicial matroids Gk(S) with 3?k?n?3 are non-regular (n is the cardinality of S). This result has also been proved σy R. Cordovil and M. Las Vergnas recently. Their proof is different from our proof, which is somewhat shorter.  相似文献   

5.
The Turán number T(n, l, k) is the smallest possible number of edges in a k-graph on n vertices such that every l-set of vertices contains an edge. Given a k-graph H = (V(H), E(H)), we let Xs(S) equal the number of edges contained in S, for any s-set S?V(H). Turán's problem is equivalent to estimating the expectation E(Xl), given that min(Xl) ≥ 1. The following lower bound on the variance of Xs is proved:
Var(Xs)?mmn?2ks?kns?1nk1
, where m = |E(H)| and m = (kn) ? m. This implies the following: putting t(k, l) = limn→∞T(n, l, k)(kn)?1 then t(k, l) ≥ T(s, l, k)((ks) ? 1)?1, whenever sl > k ≥ 2. A connection of these results with the existence of certain t-designs is mentioned.  相似文献   

6.
We study algorithms for ?SAT and its generalized version ?GENSAT, the problem of computing the number of satisfying assignments of a set of propositional clauses Σ. For this purpose we consider the clauses given by their incidence graph, a signed bipartite graph SI(Σ), and its derived graphs I(Σ) and P(Σ).It is well known, that, given a graph of tree-width k, a k-tree decomposition can be found in polynomial time. Very recently Oum and Seymour have shown that, given a graph of clique-width k, a (23k+2-1)-parse tree witnessing clique-width can be found in polynomial time.In this paper we present an algorithm for ?GENSAT for formulas of bounded tree-width k which runs in time 4k(n+n2·log2(n)), where n is the size of the input. The main ingredient of the algorithm is a splitting formula for the number of satisfying assignments for a set of clauses Σ where the incidence graph I(Σ) is a union of two graphs G1 and G2 with a shared induced subgraph H of size at most k. We also present analogue improvements for algorithms for formulas of bounded clique-width which are given together with their derivation.This considerably improves results for ?SAT, and hence also for SAT, previously obtained by Courcelle et al. [On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic, Discrete Appl. Math. 108 (1-2) (2001) 23-52].  相似文献   

7.
Let n and k be integers with nk≥0. This paper presents a new class of graphs H(n,k), which contains hypercubes and some well-known graphs, such as Johnson graphs, Kneser graphs and Petersen graph, as its subgraphs. The authors present some results of algebraic and topological properties of H(n,k). For example, H(n,k) is a Cayley graph, the automorphism group of H(n,k) contains a subgroup of order 2nn! and H(n,k) has a maximal connectivity and is hamiltonian if k is odd; it consists of two isomorphic connected components if k is even. Moreover, the diameter of H(n,k) is determined if k is odd.  相似文献   

8.
In 1976, R.N. Burns and C.E. Haff gave an algorithm for finding the kth-best spanning tree of an edge-weighted graph as well as the kth-best base of an element-weighted matroid. In this paper, after introducing the concept of a convex weight function defined on the vertex set of a connected graph, the following result is proved: Let H = (S, I) be an independence system, where I is the set of independent subsets of H, such that all the maximal independent subsets of H are of the same cardinality. Then a necessary and sufficient condition for H to be a matroid is that, for any weight function W defined on S, the algorithm of Burns and Haff gives a labelling of the family of maximal sets in I as B1, B2, …, Bn such that W(B1) ? W(B2) ? ··· ? W(Bn).  相似文献   

9.
An investigation is made of the polynomials fk(n) = S(n + k, n) and gk(n) = (?1)ks(n, n ? k), where S and s denote the Stirling numbers of the second and first kind, respectively. The main result gives a combinatorial interpretation of the coefficients of the polynomial (1 ? x)2k+1Σn=0fk(n)xn analogous to the well-known combinatorial interpretation of the Eulerian numbers in terms of descents of permutations.  相似文献   

10.
In this paper we define the n-cube Qn as the poset obtained by taking the cartesian product of n chains each consisting of two points. For a finite poset X, we then define dim2X as the smallest positive integer n such that X can be embedded as a subposet of Qn. For any poset X we then have log2 |X| ? dim2X ? |X|. For the distributive lattice L = 2X, dim2L = |X| and for the crown Skn, dim2 (Skn) = n + k. For each k ? 2, there exist positive constants c1 and c2 so that for the poset X consisting of all one element and k-element subsets of an n-element set, the inequality c1 log2n < dim2(X) < c2 log2n holds for all n with k < n. A poset is called Q-critical if dim2 (X ? x) < dim2(X) for every x ? X. We define a join operation ⊕ on posets under which the collection Q of all Q-critical posets which are not chains forms a semigroup in which unique factorization holds. We then completely determine the subcollection M ? Q consisting of all posets X for which dim2 (X) = |X|.  相似文献   

11.
Let S be a subset of a finite abelian group G. The Cayley sum graph Cay+(G, S) of G with respect to S is a graph whose vertex set is G and two vertices g and h are joined by an edge if and only if g + hS. We call a finite abelian group G a Cayley sum integral group if for every subset S of G, Cay+(G, S) is integral i.e., all eigenvalues of its adjacency matrix are integers. In this paper, we prove that all Cayley sum integral groups are represented by Z3 and Zn2 n, n ≥ 1, where Zk is the group of integers modulo k. Also, we classify simple connected cubic integral Cayley sum graphs.  相似文献   

12.
In a seminal paper, Erd?s and Rényi identified a sharp threshold for connectivity of the random graph G(n,p). In particular, they showed that if p?logn/n then G(n,p) is almost always connected, and if p?logn/n then G(n,p) is almost always disconnected, as n.The clique complexX(H) of a graph H is the simplicial complex with all complete subgraphs of H as its faces. In contrast to the zeroth homology group of X(H), which measures the number of connected components of H, the higher dimensional homology groups of X(H) do not correspond to monotone graph properties. There are nevertheless higher dimensional analogues of the Erd?s-Rényi Theorem.We study here the higher homology groups of X(G(n,p)). For k>0 we show the following. If p=nα, with α<−1/k or α>−1/(2k+1), then the kth homology group of X(G(n,p)) is almost always vanishing, and if −1/k<α<−1/(k+1), then it is almost always nonvanishing.We also give estimates for the expected rank of homology, and exhibit explicit nontrivial classes in the nonvanishing regime. These estimates suggest that almost all d-dimensional clique complexes have only one nonvanishing dimension of homology, and we cannot rule out the possibility that they are homotopy equivalent to wedges of a spheres.  相似文献   

13.
With each nonempty graph G one can associate a graph L(G), called the line graph of G, with the property that there exists a one-to-one correspondence between E(G) and V(L(G)) such that two vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent. For integers m ≥ 2, the mth iterated line graph Lm(G) of G is defined to be L(Lm-1(G)). A graph G of order p ≥ 3 is n-Hamiltonian, 0 ≤ np ? 3, if the removal of any k vertices, 0 ≤ kn, results in a Hamiltonian graph. It is shown that if G is a connected graph with δ(G) ≥ 3, where δ(G) denotes the minimum degree of G, then L2(G) is (δ(G) ? 3)-Hamiltonian. Furthermore, if G is 2-connected and δ(G) ≥ 4, then L2(G) is (2δ(G) ? 4)-Hamiltonian. For a connected graph G which is neither a path, a cycle, nor the graph K(1, 3) and for any positive integer n, the existence of an integer k such that Lm(G) is n-Hamiltonian for every mk is exhibited. Then, for the special case n = 1, bounds on (and, in some cases, the exact value of) the smallest such integer k are determined for various classes of graphs.  相似文献   

14.
《Discrete Applied Mathematics》2002,116(1-2):115-126
For vertices u and v in an oriented graph D, the closed interval I[u,v] consists of u and v together with all vertices lying in a uv geodesic or vu geodesic in D. For SV(D), I[S] is the union of all closed intervals I[u,v] with u,vS. A set S is convex if I[S]=S. The convexity number con(D) is the maximum cardinality of a proper convex set of V(D). The nontrivial connected oriented graphs of order n with convexity number n−1 are characterized. It is shown that there is no connected oriented graph of order at least 4 with convexity number 2 and that every pair k, n of integers with 1⩽kn−1 and k≠2 is realizable as the convexity number and order, respectively, of some connected oriented graph. For a nontrivial connected graph G, the lower orientable convexity number con(G) is the minimum convexity number among all orientations of G and the upper orientable convexity number con+(G) is the maximum such convexity number. It is shown that con+(G)=n−1 for every graph G of order n⩾2. The lower orientable convexity numbers of some well-known graphs are determined, with special attention given to outerplanar graphs.  相似文献   

15.
Six different formulations equivalent to the statement that, for n ? 2, the sum ∑k = 1n (?1)kS(n, k) ≠ 0, where the S(n, k) are Stirling numbers of the second kind, are shown to hold. Using number-theoretic methods, a sufficient condition for the above statement to be true for a set of positive integers n having density 1 is then obtained. It remains open whether it is true for all n > 2. The equivalent statements then yield information on the irreducibility of the polynomials ∑k = 1nS(n, k)tk = 1 over the rationals, the nonreal zeros for successive derivatives (ddz)nexp(eiz), a gap theorem for the nonzero coefficients of exp(?ez), and the continuous solution of the differential-difference equation ?(x) = 1, 0 ? x < 1, ?′(x) = ?¦x¦?(x ? 1), 1 ? x < ∞, where ∥ denotes the greatest integer function.  相似文献   

16.
For integersk≥2, thek-line graph Lk(G) of a graph G is defined as a graph whose vertices correspond to the complete subgraphs onk vertices in G with two distinct vertices adjacent if the corresponding complete subgraphs have 1 common vertices inG. We define iteratedk-line graphs byL k n (G) ?L k (L k n?1 (G), whereL k 0 (G) ?G. In this paper the iterated behavior of thek-line graph operator is investigated. It turns out that the behavior is quite different fork = 2 (the well-known line graph case),k = 3, and k≥4.  相似文献   

17.
We examine a family of graphs called webs. For integers n ? 2 and k, 1 ? k ? 12n, the web W(n, k) has vertices Vn = {1, …, n} and edges {(i, j): j = i+k, …, i+n ? k, for i?Vn (sums mod n)}. A characterization is given for the vertex packing polyhedron of W(n, k) to contain a facet, none of whose projections is a facet for the lower dimensional vertex packing polyhedra of proper induced subgraphs of W(n, k). Simple necessary and sufficient conditions are given for W(n, k) to contain W(n′, k′) as an induced subgraph; these conditions are used to show that webs satisfy the Strong Perfect Graph Conjecture. Complements of webs are also studied and it is shown that if both a graph and its complement are webs, then the graph is either an odd hole or its complement.  相似文献   

18.
Let S(n, k, v) denote the number of vectors (a0,…, an?1) with nonnegative integer components that satisfy a0 + … + an ? 1 = k and Σi=0n?1iaiv (mod n). Two proofs are given for the relation S(n, k, v) = S(k, n, v). The first proof is by algebraic enumeration while the second is by combinatorial construction.  相似文献   

19.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n,k, it is proved that if 3?k?n-3, then Hn,k, the graph obtained from the star K1,n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n+k edges.  相似文献   

20.
One of the basic results in graph theory is Dirac's theorem, that every graph of order n?3 and minimum degree ?n/2 is Hamiltonian. This may be restated as: if a graph of order n and minimum degree ?n/2 contains a cycle C then it contains a spanning cycle, which is just a spanning subdivision of C. We show that the same conclusion is true if instead of C, we choose any graph H such that every connected component of H is non-trivial and contains at most one cycle. The degree bound can be improved to (n-t)/2 if H has t components that are trees.We attempt a similar generalization of the Corrádi-Hajnal theorem that every graph of order ?3k and minimum degree ?2k contains k disjoint cycles. Again, this may be restated as: every graph of order ?3k and minimum degree ?2k contains a subdivision of kK3. We show that if H is any graph of order n with k components, each of which is a cycle or a non-trivial tree, then every graph of order ?n and minimum degree ?n-k contains a subdivision of H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号