首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An excessive factorization of a multigraph G is a set F={F1,F2,…,Fr} of 1-factors of G whose union is E(G) and, subject to this condition, r is minimum. The integer r is called the excessive index of G and denoted by . We set if an excessive factorization does not exist. Analogously, let m be a fixed positive integer. An excessive[m]-factorization is a set M={M1,M2,…,Mk} of matchings of G, all of size m, whose union is E(G) and, subject to this condition, k is minimum. The integer k is denoted by and called the excessive [m]-index of G. Again, we set if an excessive [m]-factorization does not exist. In this paper we shall prove that, for bipartite multigraphs, both the parameters and are computable in polynomial time, and we shall obtain an efficient algorithm for finding an excessive factorization and excessive [m]-factorization, respectively, of any bipartite multigraph.  相似文献   

3.
Suppose that k is a non-negative integer and a bipartite multigraph G is the union of
$$\begin{aligned} N=\left\lfloor \frac{k+2}{k+1}n\right\rfloor -(k+1) \end{aligned}$$
matchings \(M_1,\dots ,M_N\), each of size n. We show that G has a rainbow matching of size \(n-k\), i.e. a matching of size \(n-k\) with all edges coming from different \(M_i\)’s. Several choices of the parameter k relate to known results and conjectures.
  相似文献   

4.
Summary In this paper we show that a bipartite multigraphG in which no vertex is adjacent to more thann edges may be decomposed into any numbern *n of matchings in such a way that the number of edges in each of these matchings differ from one another by at most one unit. When the two sets of verticesX and¯X ofG are partitioned into subsetsX i and¯X j respectively, we give conditions for the existence of a decomposition ofG inton *n matchings such that each matching contains at most i edges adjacent to vertices inX i and at most j edges adjacent to vertices in¯X j .There are many practical problems of scheduling with resource limitations for which such decompositions of a bipartite graph are required; some examples are given.
Zusammenfassung Es wird gezeigt, daß ein bipartiter MultigraphG, in dem in keinem Knoten mehr alsn Kanten zusammenstoßen, in eine beliebige Zahln *n von matchings dekomponiert werden kann, und zwar derart, daß die Zahl der Kanten in jedem dieser matchings untereinander um höchstens eins differiert. Mit dem Aufteilen der beiden KnotenmengenX und ¯X vonG in UntermengenX i und¯X j werden Bedingungen für die Existenz einer Dekomposition vonG inn * n matchings angegeben, wobei jedes matching höchstens i ( j ) Kanten enthält, die in den KnotenX i (bzw.¯X j ) zusammenstoßen.Es gibt viele praktische Planungsprobleme mit beschränkten Ressourcen, für die solche Dekompositionen von bipartiten Graphen verlangt werden; einige Beispiele werden angeführt.


This work was supported by a grant from the National Research Council of Canada.  相似文献   

5.
We determine the chromatic index of any multigraph which contains a vertex whose detetion results in a bipartite multigraph.  相似文献   

6.
The spectrum of path factorization of bipartite multigraphs   总被引:1,自引:0,他引:1  
LetλK_(m,n)be a bipartite multigraph with two partite sets having m and n vertices, respectively.A P_v-factorization ofλK_(m,n)is a set of edge-disjoint P_v-factors ofλK_(m,n)which partition the set of edges ofλK_(m,n).When v is an even number,Ushio,Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a P_v-factorization ofλK_(m,n).When v is an odd number,we have proposed a conjecture.Very recently,we have proved that the conjecture is true when v=4k-1.In this paper we shall show that the conjecture is true when v = 4k 1,and then the conjecture is true.That is,we will prove that the necessary and sufficient conditions for the existence of a P_(4k 1)-factorization ofλK_(m,n)are(1)2km≤(2k 1)n,(2)2kn≤(2k 1)m,(3)m n≡0(mod 4k 1),(4)λ(4k 1)mn/[4k(m n)]is an integer.  相似文献   

7.
For d≥1, s≥0 a (d,d+s)-graph is a graph whose degrees all lie in the interval {d,d+1,…,d+s}. For r≥1, a≥0 an (r,r+a)-factor of a graph G is a spanning (r,r+a)-subgraph of G. An (r,r+a)-factorization of a graph G is a decomposition of G into edge-disjoint (r,r+a)-factors. A graph is (r,r+a)-factorable if it has an (r,r+a)-factorization.We prove a number of results about (r,r+a)-factorizations of (d,d+s)-bipartite multigraphs and of (d,d+s)-pseudographs (multigraphs with loops permitted). For example, for t≥1 let β(r,s,a,t) be the least integer such that, if dβ(r,s,a,t) then every (d,d+s)-bipartite multigraph G is (r,r+a)-factorable with x(r,r+a)-factors for at least t different values of x. Then we show that
  相似文献   

8.
A K1,k-factorization of λKm,n is a set of edge-disjoint K1,k-factors of λKm,n,which partition the set of edges of λKm,n.In this paper,it is proved that a sufficient condition for the existence of K1,k-factorization of λKm,n,whenever k is any positive integer,is that(1) m ≤ kn,(2) n ≤ km,(3) km-n ≡ kn-m ≡ 0(mod(k2-1)) and(4) λ(km-n)(kn-m) ≡ 0(mod k(k -1)(k2 -1)(m n)).  相似文献   

9.
In this paper, we obtain a criterion for the decomposition of the λ-fold balanced complete bipartite multigraph λKn,n into (not necessarily isomorphic) multistars with the same number of edges. We also give a necessary and sufficient condition of decomposing 2Kn,n into isomorphic multistars.  相似文献   

10.
A K1,k-factorization of λKm,n is a set of edge-disjoint K1,k-factors of λKm,n, which partition the set of edges of λKm,n. In this paper, it is proved that a sufficient condition for the existence of K1,k-factorization of λKm,n, whenever k is any positive integer, is that (1) m ≤ kn, (2) n ≤ km, (3) km-n = kn-m ≡ 0 (mod (k^2- 1)) and (4) λ(km-n)(kn-m) ≡ 0 (mod k(k- 1)(k^2 - 1)(m + n)).  相似文献   

11.
LetλKm,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A Pv-factorization of λKm,n is a set of edge-disjoint Pv-factors of λKm,n which partition the set of edges of λKm,n. When v is an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a Pv-factorization of λKm,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true for v= 3. In this paper we will show that the conjecture is true when v= 4k- 1. That is, we shall prove that a necessary and sufficient condition for the existence of a P4k-1-factorization of λKm,n is (1) (2κ - 1)m ≤ 2kn, (2) (2k - 1)n ≤ 2km, (3) m + n ≡0 (mod 4κ - 1), (4) λ(4κ - 1)mn/[2(2κ - 1)(m + n)] is an integer.  相似文献   

12.
Let λK m,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A P v-factorization of λK m,n is a set of edge-disjoint P v -factors of λK m,n which partition the set of edges of λK m,n. When v is an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a P v -factorization of λK m,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true for v = 3. In this paper we will show that the conjecture is true when v = 4k ? 1. That is, we shall prove that a necessary and sufficient condition for the existence of a P 4k?1-factorization of λK m,n is (1) (2k ? 1)m ? 2kn, (2) (2k ? 1)n ? 2km, (3) m + n ≡ 0 (mod 4k ? 1), (4) λ(4k ? 1)mn/[2(2k ? 1)(m + n)] is an integer.  相似文献   

13.
LetλKm,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A Pν-factorization ofλKm,n is a set of edge-disjoint Pν-factors ofλKm,n which partition the set of edges ofλKm,n. Whenνis an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a Pν-factorization ofλKm,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true forν= 3. In this paper we will show that the conjecture is true whenν= 4k-1. That is, we shall prove that a necessary and sufficient condition for the existence of a P4k-1-factorization ofλKm,n is (1) (2k-1)m≤2kn, (2) (2k-1)n≤2km, (3)m n = 0 (mod 4k-1), (4)λ(4k-1)mn/[2(2k-1)(m n)] is an integer.  相似文献   

14.
Graham and Pollak [2] proved that n – 1 is the minimum number of edge-disjoint complete bipartite subgraphs into which the edges of Kn decompose. Tverberg [6], using a linear algebraic technique, was the first to give a simple proof of this result. We apply Tverberg's technique to obtain results for two related decomposition problems, in which we wish to partition the arcs/edges of complete digraphs/multigraphs into a minimum number of arc/edge-disjoint complete bipartite subgraphs of appropriate natures. We obtain exact results for the digraph problem, which was posed by Lundgren and Maybee [4]. We also obtain exact results for the decomposition of complete multigraphs with exactly two edges connecting every pair of distinct vertices.  相似文献   

15.
In edge colouring it is often useful to have information about the degree distribution of the neighbours of a given vertex. For example, the well-known Vizing's Adjacency Lemma provides a useful lower bound on the number of vertices of maximum degree adjacent to a given one in a critical graph. We consider an extension of this problem, where we seek information on vertices at distance two from a given vertex in a critical graph. We extend and, simultaneously, generalize to multigraphs two results proved, respectively, by Zhang [Every planar graph with maximum degree seven is Class 1, Graphs Combin. 16 (2000) 467-495] and Sanders and Zhao [Planar graphs of maximum degree seven are Class 1, J. Combin. Theory Ser. B 83 (2001) 201-212].  相似文献   

16.
Let λK m,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A P v-factorization of λK m,n is a set of edge-disjoint P v -factors of λK m,n which partition the set of edges of λK m,n. When v is an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a P v -factorization of λK m,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true for v = 3. In this paper we will show that the conjecture is true when v = 4k − 1. That is, we shall prove that a necessary and sufficient condition for the existence of a P 4k−1-factorization of λK m,n is (1) (2k − 1)m ⩽ 2kn, (2) (2k − 1)n ⩽ 2km, (3) m + n ≡ 0 (mod 4k − 1), (4) λ(4k − 1)mn/[2(2k − 1)(m + n)] is an integer.  相似文献   

17.
18.
Edge-coloring of multigraphs   总被引:1,自引:0,他引:1  
We introduce a monotone invariant π(G) on graphs and show that it is an upper bound of the chromatic index of graphs. Moreover, there exist polynomial time algorithms for computing π(G) and for coloring edges of a multigraph G by π(G) colors. This generalizes the classical edge-coloring theorems of Shannon and Vizing.  相似文献   

19.
Critical star multigraphs   总被引:1,自引:0,他引:1  
A star-multigraphG is a multigraph in which there is a vertexv + which is incident with each non-simple edge. It is critical if it is connected, Class 2 and(G\e) < (G) for eache E(G). We show that, ifG is any star multigraph, then(G) (G) + 1. We investigate the edge-chromatic class of star multigraphs with at most two vertices of maximum degree. We also obtain a number of results on critical star multigraphs. We shall make use of these results in later papers.  相似文献   

20.
The notion of a competition multigraph was introduced by C. A. Anderson, K. F. Jones, J. R. Lundgren, and T. A. McKee [C. A. Anderson, K. F. Jones, J. R. Lundgren, and T. A. McKee: Competition multigraphs and the multicompetition number, Ars Combinatoria 29B (1990) 185-192] as a generalization of the competition graphs of digraphs.In this note, we give a characterization of competition multigraphs of arbitrary digraphs and a characterization of competition multigraphs of loopless digraphs. Moreover, we characterize multigraphs whose multicompetition numbers are at most m, where m is a given nonnegative integer and give characterizations of competition multihypergraphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号