首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
In 1991, one of the authors showed the existence of quadratic transformations between the Painlevé VI equations with local monodromy differences (1/2, a, b, ±1/2) and (a, a, b, b). In the present paper we give concise forms of these transformations. They are related to the quadratic transformations obtained by Manin and Ramani–Grammaticos–Tamizhmani via Okamoto transformations. To avoid cumbersome expressions with differentiation, we use contiguous relations instead of the Okamoto transformations. The 1991 transformation is particularly important as it can be realized as a quadratic‐pull back transformation of isomonodromic Fuchsian equations. The new formulas are illustrated by derivation of explicit expressions for several complicated algebraic Painlevé VI functions. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We study special solutions of the Painlevé II (PII) equation called tronquée solutions, i.e., those having no poles along one or more critical rays in the complex plane. They are parameterized by special monodromy data of the Lax pair equations. The manifold of the monodromy data for a general solution is a twodimensional complex manifold with one- and zero-dimensional singularities, which arise because there is no global parameterization of the manifold. We show that these and only these singularities (together with zeros of the parameterization) are related to the tronquée solutions of the PII equation. As an illustration, we consider the known Hastings-McLeod and Ablowitz-Segur solutions and some other solutions to show that they belong to the class of tronquée solutions and correspond to one or another type of singularity of the monodromy data.  相似文献   

3.
A classification of solutions of the first and second Painlevé equations corresponding to a special distribution of poles at infinity is considered. The relation between this distribution and singularities of the two-dimensional complex monodromy data manifold used for the parameterization of the solutions is analyzed. It turns out that solutions of the Painlevé equations have no poles in a certain critical sector of the complex plane if and only if their monodromy data lie in the singularity submanifold. Such solutions belong to the so-called class of “truncated” solutions (intégrales tronquée) according to P. Boutroux’s classification. It is shown that all known special solutions of the first and second Painlevé equations belong to this class.  相似文献   

4.
The fourth-order analogue of the second Painlevé equation is considered. The monodromy manifold for a Lax pair associated with the P 2 2 equation is constructed. The direct monodromy problem for the Lax pair is solved. Asymptotic solutions expressed via trigonometric functions in the Boutroux variables along the rays ? = \(\frac{2}{5}\)π(2n + 1) on the complex plane have been found by the isomonodromy deformations technique.  相似文献   

5.
Euler integral transformations relate solutions of ordinary linear differential equations and generate integral representations of the solutions in a number of cases or relations between solutions of constrained equations (Euler symmetries) in some other cases. These relations lead to the corresponding symmetries of the monodromy matrices. We discuss Euler symmetries in the case of the simplest Fuchsian system that is equivalent to a deformed Heun equation, which is in turn related to the Painlevé PVI equation. The existence of integral symmetries of the deformed Heun equation leads to the corresponding symmetries of the PVI equation. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 155, No. 2, pp. 252–264, May, 2008.  相似文献   

6.
Several results including integral representation of solutions and Hermite– Krichever Ansatz on Heun’s equation are generalized to a certain class of Fuchsian differential equations, and they are applied to equations which are related with physics. We investigate linear differential equations that produce Painlevé equation by monodromy preserving deformation and obtain solutions of the sixth Painlevé equation which include Hitchin’s solution. The relationship with finite-gap potential is also discussed. We find new finite-gap potentials. Namely, we show that the potential which is written as the sum of the Treibich–Verdier potential and additional apparent singularities of exponents − 1 and 2 is finite-gap, which extends the result obtained previously by Treibich. We also investigate the eigenfunctions and their monodromy of the Schr?dinger operator on our potential.  相似文献   

7.
We develop an underlying relationship between the theory of rational approximations and that of isomonodromic deformations. We show that a certain duality in Hermite’s two approximation problems for functions leads to the Schlesinger transformations, i.e. transformations of a linear differential equation shifting its characteristic exponents by integers while keeping its monodromy invariant. Since approximants and remainders are described by block-Toeplitz determinants, one can clearly understand the determinantal structure in isomonodromic deformations. We demonstrate our method in a certain family of Hamiltonian systems of isomonodromy type including the sixth Painlevé equation and Garnier systems; particularly, we present their solutions written in terms of iterated hypergeometric integrals. An algorithm for constructing the Schlesinger transformations is also discussed through vector continued fractions.  相似文献   

8.
Quadratic transformations for the third and fifth Painlev’e equations are constructed via the method of RS-transformations. This method can be viewed as a prolongation of quadratic transformations for the Painlevé equations to the associated linear ODEs, whose isomonodromy deformations are governed by the corresponding Painlevé equations. Bibliography: 15 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 317, 2004, pp. 105–121.  相似文献   

9.
In this paper we discuss a new approach to the relationship between integrability and symmetries of a nonlinear partial differential equation. The method is based heavily on ideas using both the Painlevé property and the singular manifold analysis, which is of outstanding importance in understanding the concept of integrability of a given partial differential equation. In our examples we show that the solutions of the singular manifold possess Lie point symmetries that correspond precisely to the so-called nonclassical symmetries. We also point out the connection between the singular manifold method and the direct method of Clarkson and Kruskal. Here the singular manifold is a function of its reduced variable. Although the Painlevé property plays an essential role in our approach, our method also holds for equations exhibiting only the conditional Painlevé property. We offer six full examples of how our method works for the six equations, which we believe cover all possible cases.  相似文献   

10.
A method for deriving difference equations (the discrete Painlevé equations in particular) from the Bäcklund transformations of the continuous Painlevé equations is discussed. This technique can be used to derive several of the known discrete painlevé equations (in particular, the first and second discrete Painlevé equations and some of their alternative versions). The Painlevé equations possess hierarchies of rational solutions and one-parameter families of solutions expressible in terms of the classical special functions for special values of the parameters. Hence, the aforementioned relations can be used to generate hierarchies of exact solutions for the associated discrete Painlevé equations. Exact solutions of the Painlevé equations simultaneously satisfy both a differential equation and a difference equation, analogously to the special functions.  相似文献   

11.
IsomonodromicdeformationsofFuchsianequationsoforder2onRiemann sphere are parameterized by the solutions of Garnier system. The purpose of this paper is to construct algebraic solutions exotic, i.e. corresponding to deformations of Fuchsian equation with Zariski dense monodromy. Specifically, we classify all the algebraic solutions (complete) exotic constructed by the method of pull-back of Doran-Kitaev: they are deduced from the data isomonodromic deformations pulling back a Fuchsian equation E given by a family of branched coverings ? t . We first introduce the structures and associated orbifoldes underlying Fuchsian equation. This allows us to have are fined version of the Riemann Hurwitz formula that allows us quickly to show that E must be hypergeometric. Then we come to limit the degree of ? and exponents, and finally to Painlevé VI. We explicitly construct one of these solutions.  相似文献   

12.
In this paper, we investigate the integrability and equivalence relationships of six coupled Korteweg–de Vries equations. It is shown that the six coupled Korteweg–de Vries equations are identical under certain invertible transformations. We reconsider the matrix representations of the prolongation algebra for the Painlevé integrable coupled Korteweg–de Vries equation in [Appl. Math. Lett. 23 (2010) 665‐669] and propose a new Lax pair of this equation that can be used to construct exact solutions with vanishing boundary conditions. It is also pointed out that all the six coupled Korteweg–de Vries equations have fourth‐order Lax pairs instead of the fifth‐order ones. Moreover, the Painlevé integrability of the six coupled Korteweg–de Vries equations are examined. It is proved that the six coupled Korteweg–de Vries equations are all Painlevé integrable and have the same resonant points, which further determines the equivalence among them. Finally, the auto‐Bäcklund transformation and exact solutions of one of the six coupled Korteweg–de Vries equations are proposed explicitly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
With Bäcklund transformations, we construct explicit solutions of Painlevé equations 2 and 4. Independently, we find solutions of degenerate cases of equations 3 and 5. The six Painlevé transcendents are referred to as 1–6.  相似文献   

14.
We study the global analytic properties of the solutions of a particular family of Painlevé VI equations with the parameters β=γ=0, δ= and 2α=(2μ-1)2 with arbitrary μ, 2μ≠∈ℤ. We introduce a class of solutions having critical behaviour of algebraic type, and completely compute the structure of the analytic continuation of these solutions in terms of an auxiliary reflection group in the three dimensional space. The analytic continuation is given in terms of an action of the braid group on the triples of generators of the reflection group. We show that the finite orbits of this action correspond to the algebraic solutions of our Painlevé VI equation and use this result to classify all of them. We prove that the algebraic solutions of our Painlevé VI equation are in one-to-one correspondence with the regular polyhedra or star-polyhedra in the three dimensional space. Oblatum 19-III-1999 & 25-XI-1999?Published online: 21 February 2000  相似文献   

15.
We outline recent developments relating Painlevé equations and 2D conformal field theory. Generic tau functions of Painlevé VI and Painlevé III3 are written as linear combinations of c=1 conformal blocks and their irregular limits. This provides explicit combinatorial series representations of the tau functions, and helps to establish a connection formula for the tau function in the Painlevé VI case.  相似文献   

16.
利用符号计算对一类系数函数是x和t的函数的变系数K dV方程进行了Pa in levé分析,得到了该方程具有Pa in levé性质时系数函数必须满足的约束条件.利用Pa in levé截断法给出了该方程的一个自B ck lund变换,作为例子根据得到的自B ck lund变换给出了两组精确解.  相似文献   

17.
A demonstration of how the point symmetries of the Chazy equation become nonlocal symmetries for the reduced equation is discussed. Moreover we construct an equivalent third-order differential equation which is related to the Chazy equation under a generalized transformation, and find the point symmetries of the Chazy equation are generalized symmetries for the new equation. With the use of singularity analysis and a simple coordinate transformation we construct a solution for the Chazy equation which is given by a right Painlevé series. The singularity analysis is applied to the new third-order equation and we find that it admits two solutions, one given by a left Painlevé series and one given by a right Painlevé series where the leading-order behaviors and the resonances are explicitly those of the Chazy equation.  相似文献   

18.
We solve the equivalence problem for the Painlevé IV equation, formulating the necessary and sufficient conditions in terms of the invariants of point transformations for an arbitrary second-order differential equation to be equivalent to the Painlevé IV equation. We separately consider three pairwise nonequivalent cases: both equation parameters are zero, a = b = 0; only one parameter is zero, b = 0; and the parameter b ?? 0. In all cases, we give an explicit point substitution transforming an equation satisfying the described test into the Painlevé IV equation and also give expressions for the equation parameters in terms of invariants.  相似文献   

19.
Euler integral symmetries relate solutions of ordinary linear differential equations and generate integral representations of the solutions in several cases or relations between solutions of constrained equations. These relations lead to the corresponding symmetries of the monodromy matrices for the differential equations. We discuss Euler symmetries in the case of the deformed confluent Heun equation, which is in turn related to the Painlevé equation PV. The existence of symmetries of the linear equations leads to the corresponding symmetries of the Painlevé equation of the Okamoto type. The choice of the system of linear equations that reduces to the deformed confluent Heun equation is the starting point for the constructions. The basic technical problem is to choose the bijective relation between the system parameters and the parameters of the deformed confluent Heun equation. The solution of this problem is quite large, and we use the algebraic computing system Maple for this.  相似文献   

20.
Matrix Szeg? biorthogonal polynomials for quasi‐definite matrices of Hölder continuous weights are studied. A Riemann‐Hilbert problem is uniquely solved in terms of the matrix Szeg? polynomials and its Cauchy transforms. The Riemann‐Hilbert problem is given as an appropriate framework for the discussion of the Szeg? matrix and the associated Szeg? recursion relations for the matrix orthogonal polynomials and its Cauchy transforms. Pearson‐type differential systems characterizing the matrix of weights are studied. These are linear systems of ordinary differential equations that are required to have trivial monodromy. Linear ordinary differential equations for the matrix Szeg? polynomials and its Cauchy transforms are derived. It is shown how these Pearson systems lead to nonlinear difference equations for the Verblunsky matrices and two examples, of Fuchsian and non‐Fuchsian type, are considered. For both cases, a new matrix version of the discrete Painlevé II equation for the Verblunsky matrices is found. Reductions of these matrix discrete Painlevé II systems presenting locality are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号