首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The effects of collision energy (E(col)) and six different H(2)CO(+) vibrational states on the title reaction have been studied over the center-of-mass E(col) range from 0.1 to 2.6 eV, including measurements of product ion recoil velocity distributions. Ab initio and Rice-Ramsperger-Kassel-Marcus calculations were used to examine the properties of complexes and transition states that might be important in mediating the reaction. Reaction is largely direct, despite the presence of multiple deep wells on the potential surface. Five product channels are observed, with a total reaction cross section at the collision limit. The competition among the major H(2) (+) transfer, hydrogen transfer, and proton transfer channels is strongly affected by E(col) and H(2)CO(+) vibrational excitation, providing insight into the factors that control competition and charge state "unmixing" during product separation. One of the more interesting results is that endoergic charge transfer appears to be controlled by Franck-Condon factors, implying that it occurs at large inter-reactant separations, contrary to the expectation that endoergic reactions should require intimate collisions to drive the necessary energy conversion.  相似文献   

2.
IntroductionA series of reactions of fluorine atoms with hydro-gen halidesF HCl HF Cl (1)(ΔH—00=-137·10 kJ/mol)F HBr HF Br (2)(ΔH—00=-202·73 kJ/mol)F HI HF I (3)(ΔH—00= -270·45 kJ/mol)belongs to the prototypical heavy-light-heavy reactionsa  相似文献   

3.
Variations in the rates of endoergic reactions due to different reagent excitations at the same total energy are of a limited (positive or negative) range and reflect a dynamical bias. Not so for bulk experiments, where all non-selected degrees of freedom have a thermal distribution.  相似文献   

4.
Quantum scattering calculations for the reaction F + HCl --> HF + Cl are performed on a new ground-state ab initio potential energy surface. The reagent rotation is found to have a dramatic effect on the reaction probability. Furthermore, the exit channel rotational thresholds leave a strong imprint on the reaction probabilities and even on the cumulative reaction probability. A very simple vibrationally adiabatic model is shown to account for most aspects of the reaction dynamics. In this model, the fast vibrational motion is adiabatically eliminated leaving the key reaction dynamics represented by a reduced atom + rotor collision. The shape of the adiabatic potential surface immediately yields to a simple and intuitive interpretation for the rotational enhancement of the rate. The rotational enhancement is shown to be an effect of the entrance channel dynamics of the atom-rotor problem.  相似文献   

5.
A vibrational coupling model to treat the solvation effects in chemical reaction rate calculations is proposed and applied to the intramolecular hydrogen transfer reaction CH3O· → ·CH2OH in the condensed phase. The effect of solvation is taken into account in two ways: (1) the solvent effect on the activation energy of the reaction is simulated by including 39 surrounding water molecules, represented by fractional charges at the assumed atomic positions, in the potential energy surface calculation; and (2) the vibrational couplings between the 10 nearest solvent molecules and the molecules constituting the reaction system are explicitly included in a vibrational frequency calculation. RRKM theory with Miller's tunneling correction included is employed to calculate the rate constants. The effect of solvation causes a significant change in the chemical reaction rate, mainly through a lowering of the activation energy. The vibrational coupling causes a slight increase of the rate constant in the tunneling region by perturbing the vibrational frequencies of the reactant and transition states, which appear in the rate-constant expression, but has little effect at higher temperatures.  相似文献   

6.
Time-dependent quantum wave packet dynamics study is carried out to investigate the initial state selected channel specific reactivity of H + LiH collisional system on a new and more accurate ab initio potential energy surface developed by Wernli et al. [J. Phys. Chem. A 113, 1121 (2009)]. The H + LiH reaction proceeds through LiH depletion and H-exchange paths. While the former path is highly exoergic (by ~2.258 eV), the latter path is thermoneutral. State selected and energy resolved integral reaction cross sections and thermal rate constants are reported and compared with the literature data. The reactivity of the LiH depletion channel is found to be greater than the H-exchange channel. Rotational excitation of the reagent LiH molecule causes a decrease of reactivity of both the channels. On the other hand, the vibrational excitation of the reagent LiH decreases the reactivity of the LiH depletion channel and increases the reactivity of the H-exchange channel. The effect of isotopic substitution (H by D) on the reaction dynamics is also examined.  相似文献   

7.
A three-dimensional potential energy surface for the endoergic reaction Ne+H 2 + →NeH++H in the2 A′ ground state of the system NeH 2 + has been calculated by quantum chemical ab initio methods (CEPA approximation). The calculated points on this surface were fitted to an analytic ansatz in terms of an extended LEPS functional form augmented by a correction function. The latter was expanded in polynomials in inverse powers of the internuclear distances. This analytic form was used for quasiclassical trajectory calculations of reactive cross sections. In agreement with experimental investigations a strong vibrational enhancement is observed, i.e. the reaction is markedly favored if the necessary reaction energy is supplied as vibrational energy of H 2 + rather than as relative translational energy. Other properties of the reaction dynamics such as the backward to forward scattering ratio, the lifetime of the collision complex NeH 2 + , and final rotational and vibrational state distributions are also discussed on the basis of the quasiclassical trajectory calculations.  相似文献   

8.
Quasiclassical trajectories have been computed on the Melius-Blint (MB) Potential Energy Surface (PES) and on the Double Many-Body Expansion (DMBE) IV PES of Pastrana et al. describing the H + O(2) <==> OH + O reaction with the nonrotating (J = 0) O(2) reagent vibrationally excited to levels v = 6, 7, 8, 9, and 10 at four temperatures: 1000, 2000, 3000, and 4000 K. The vibrational energy levels were selected by using a semiclassical Einstein-Brillouin-Keller (EBK) quantization procedure while the relative translational energy was sampled from a Boltzmann weighted distribution. The rate coefficient for the formation of the OH + O products is seen to increase monotonically with quantum number and nearly monotonically with temperature. On the MB PES, at T = 1000 K, the total rate coefficient increases by a factor of 5.2 as the initial vibrational quantum number of the O(2) diatom increases from v = 6 to v = 10. For T = 2000 K, this factor drops to 3.3, to 2.9 for T = 3000 K, and to 2.5 for T = 4000 K. On the DMBE IV PES, at T = 1000 K the total rate coefficient increases by a factor of 4.1 as the initial vibrational quantum number of the O(2) diatom increases from v = 6 to v = 10. For T = 2000 K, this factor drops to 3.5, to 2.1 for T = 3000 K, and to 2.0 for T = 4000 K. The less-direct group (defined below) of trajectories is sensitive to the initial O(2) vibrational excitation in several different temperature ranges, apparently retaining the effect of reagent vibrational excitation. The more-direct group (defined below) of trajectories does not exhibit this behavior. Reagent vibrational excitation does not increase the total rate coefficients for the title reaction more than the increase due to a simple temperature increase. The less-direct and more-direct groups of trajectories differ in their contribution to the rate coefficient for the title reaction. In particular, at T = 4000 K, the two PESs used in this work differ dramatically in the roles of the less-direct and more-direct trajectories. The behavior of the more-direct and less-direct groups of trajectories can be understood in terms of the efficiency of intramolecular vibrational energy transfer. This work utilizes the recently introduced PES Library, POTLIB 2001, which made the comparisons between the two PESs discussed in this work possible in a very straightforward way.  相似文献   

9.
It is shown by use of Fourier transform ion cyclotron resonance (FTICR) mass spectrometry that photoexcitation of protonated naphthalene by visible laser light of 488 nm can effect a proton transfer from this ion to acetonitrile. The reaction of the ground state reaction partners is endoergic by 31 kJ/mol.  相似文献   

10.
The channel specific and initial state-selected reaction cross section and temperature-dependent rate constant for the title system is calculated with the aid of a time-dependent wave-packet approach and using the ab initio potential energy surface of Dunne et al. [Chem. Phys. Lett. 336, 1 (2001)]. All partial-wave contributions up to the total angular momentum J=74 are explicitly calculated within the coupled states (CS) approximation. Companion calculations are also carried out employing the standard as well as the uniform J-shifting (JS) approximation. The overall variation of reaction cross sections corresponds well to the behavior of a barrierless reaction. The hydrogen exchange channel yielding HLi+H products is seen to be more favored over the HLi depletion channel yielding Li+H(2) products at low and moderate collision energies. Sharp resonance features are observed in the cross-section results for the HLi depletion channel at low energies. Resonance features in the reaction cross sections average out with various partial-wave contributions, when compared to the same observed in the individual reaction probability curve. Except near the onset of the reaction, the vibrational and rotational excitation of the reagent HLi, in general, does not dramatically influence the reactivity of either channel. The thermal rate constants calculated up to 4000 K show nearly Arrhenius type behavior. The rate constant decreases with vibrational excitation of the reagent HLi, indicating that the cold HLi molecules are efficiently depleted in the reactive encounter with H at relatively low temperatures. The results obtained from the JS approximation are found to agree well qualitatively with the CS results.  相似文献   

11.
Crossed molecular beam techniques have been used to study the endoergic reaction between F2 and I2. Above a threshold energy of 4 kcal/mole the observed products are I2F and F. At higher energies IF is also produced. Angular and velocity distributions indicate that the IF does not result from a four-center exchange reaction.  相似文献   

12.
Theoretical investigations on the stereodynamics of the O(3P)+D2 reaction have been calcu-lated by means of the quasi-classical trajectory to study the product rotational polarization at collision energy of 104.5 kJ/mol on the potential energy surface of the ground 3A" triplet state. The vector properties including angular momentum alignment distributions and four polarization dependent generalized differential cross-sections of product have been presented. Furthermore, the influence of reagent vibrational excitation on the product vector properties has also been studied. The results indicate that the vector properties are sensitively affected by reagent vibrational excitation.  相似文献   

13.
The purpose of this paper is to study the conditions under which the rate constant exhibits the Arrhenius type of temperature dependence and the damping effect on the rate constant. According to the starvation kinetics, the rate of reaction is determined by the rate of energy flow in the high temperature range. We shall show that the rate of energy flow (vibrational relaxation) reaches a finite limit in the high temperature condition.  相似文献   

14.
The initial state selected time-dependent wave packet calculations have been carried out to study the title reaction with seven degrees of freedom included by restricting the nonreacting CH(3) group under C(3V) symmetry and the CH bond length in the group. Total reaction probabilities as well as integral cross sections were calculated for the ground and four vibrationally excited reagent states. Our calculation shows that the reactivity is very small for the reaction for collision energy up to 1.0 eV for all the initial states. Initial vibration excitation of CH(4), in particular, the CH stretch excitation, enhances the reactivity, but only part of the excitation energy deposited can be used to reduce the reaction threshold. The rate constant for the ground initial state agrees rather well with that from a recent quasiclassical trajectory study and is larger than that from the semirigid vibrating rotor target calculations, in particular, in the low temperature region. On the other hand, the thermal rate constant calculated from the integral cross sections for these five vibrational states is about a factor of 20 smaller than that from the multiconfiguration time-dependent Hartree study.  相似文献   

15.
a quasiclassical trajectory study has been carried out to investigate the dynamics of collisions between Br + HCl (1 υ′ 4) and Br + DCl (υ′ = 2,3). For HCl (υ′ 2) and DCl (υ′ = 3), the endoergic reaction producing Cl + HBr occurs readily, and at approximately the same rate as vibrational deactivation in non-reactive collisions. For HCl(υ′ = 2) and DCl(υ′ = 3), where the initial vibrational energies are similar to |ΔE0 for the reaction, the rates of both reactive and inelastic processes are quite strongly temperature dependent but the ratio of reactive to inelastic encounters is not a strong function of T. Comparison of the calculated results for Br + HCl(υ′ = 1) with experimentally determined rates strongly suggests that, at least at low temperatures, removal of HCl(υ′ = 1) by Br atoms occurs predominantly via electronically non-adiabatic vibrational relaxation.  相似文献   

16.
We present converged exact quantum wave packet calculations of reaction probabilities, integral cross sections, and thermal rate coefficients for the title reaction. Calculations have been carried out on the ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged wave packet reaction probabilities at selected values of the total angular momentum up to a partial wave of J = 140 with the HCl reagent initially selected in the v = 0, j = 0-16 rovibrational states have been obtained for the collision energy range from threshold up to 0.8 eV. The present calculations confirm an important enhancement of reactivity with rotational excitation of the HCl molecule. First, accurate integral cross sections and rate constants have been calculated and compared with the available experimental data.  相似文献   

17.
We explore the use of mass scaled cluster coordinates to describe polyatomic molecule reaction dynamics. These coordinates provide the natural extension to polyatomic systems of the familiar atom—diatom model of “rolling a marble” on a skewed and scaled potential surface in that they reduce the kinetic energy of an arbitrary system to one equivalent to that of a single mass point moving in 3N - 3 dimensions. For any given number of atoms, usually several distinct types of mass scaled cluster coordinates can be introduced, all of which are interrelated by orthogonal transformations, and many of which are convenient for describing trajectory motion in one or more arrangement channels. We illustrate these points by an application to the collinear O + CS2 → SO + CS reaction. For this system, the reagent to product coordinate transformation is conveniently described in terms of two Euler angles α and β, for which β is analogous to the atom—diatom skew angle, and α determines how the reagent vibrational normal modes relate to the product degrees of freedom. Examination of trajectory behavior indicates that the rather small value of π - α (21.7°) leads to a rather clean correlation between CS2 asymmetric stretch motion and product CS vibrational motion, and between CS2 symmetric stretch and a combination of SO stretch and product translation. This explains why symmetric stretch mode excitation enhances the O + CS2 reaction rate more efficiently than asymmetric stretch mode excitation. We also find for O + CS2 (and many other reactions for which the unbroken bond does not significantly change its length during the reaction) that the reagent and product segments of the minimum energy path are coplanar. This means that a natural partitioning of the reaction dynamics exists in which motions parallel to this plane tend to be active in promoting the reaction whereas motions perpendicular tend to be inactive. A study of trajectory motions and product state energy partitioning for O + CS2 confirms this.  相似文献   

18.
基于LEPS势能面, 用三维含时量子波包法对O(3P)+HBr(DBr)反应进行了准确的动力学计算. 计算的结果表明, 振动激发对这个反应是有效的, 而转动激发在某一能量范围内具有方位效应. 计算得到了该反应的速率常数和反应截面, 速率常数kO+HBr的计算值同实验值符合得很好. 通过对相应结果的对比, 可以发现这个反应具有比较明显的同位素效应.  相似文献   

19.
A systematic study of the reagent ro-vibrational excitations in H(2) + OH reaction is presented on three different potential energy surfaces using the multiconfiguration time-dependent Hartree method. An exact form of the kinetic energy operator including Coriolis coupling has been used. Coupled channel results on WDSE surface for vibrational excitation of H(2) produce very large cross sections in accordance with the previous approximate results. The rate constant obtained for H(2)(v = 1) at 300 K on the YZCL2 surface shows an excellent agreement with the most recent experimental result. Quantum dynamical results for ro-vibrational excitation of reagents obtained on the WSLFH surface show similar behavior to previous quasiclassical trajectory studies. The integral cross sections obtained for excited reagent rotations exhibit contrasting trends on the three surfaces. The effects are explained considering the different orientations of the transition state structure and the individual surface characteristics.  相似文献   

20.
基于LEPS势能面, 用三维含时量子波包法对O(3~P)+HBr(DBr)反应进行了准确的动力学计算. 计算的结果表明, 振动激发对这个反应是有效的, 而转动激发在某一能量范围内具有方位效应. 计算得到了该反应的速率常数和反应截面, 速率常数kO+HBr的计算值同实验值符合得很好. 通过对相应结果的对比, 可以发现这个反应具有比较明显的同位素效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号